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1. Heatwave Climatology — Models tend to overestimate frequencies 1. Blocking Climatology (1980~2010)— (DL) models are more consistent with ERA5
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» Validation: To rigorously test if Deep Learning (DL) atmospheric models = orders of magnitude when
(DLESYM, NGCM) can reproduce historical extreme weathers (1900-1960) compared the correlation with
outside their training period as reliably as physical models. 20CRv3.

« Attribution: To utilize the speed of DL models to generate massive ensembles 05 3°C0r'rg|1;tion°'§’g900‘_’-2'1;10)°'3° S * Out-of-sample period (1900-
(100 members), allowing us to isolate the influence of Sea Surface Temperature = | | 1960) shows similar skills.
(SST) variability on atmospheric blocking and temperature extremes. * Positive Correlation except North American . L . L L

» and Asian (Model vs. 20CRv3). « Large ensemble simulations filter out internal atmospheric variability, thereby isolating
s * Positive Correlation everywhere. (Model vs. the SST-forced signal, leading to high correlations (see Greenland Example)
oo - Model) 3. Example — Greenland Blocking Frequencies
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* The Generalization Test: In-Sample (1980—-2020): Period used to train the Al models; Out- ' L ' = ' = —0.2 : s
of-Sample (1900-1960): The critical validation period. Can Al models simulate weather » Positive autocorrelation differences (vs. 20CR) align with frequency overestimation
patterns from a climate they have never "seen"? :

3. Defining the Ext Heat Cold d Atmospheric Blocki i
- Lefining the Extremes — Heatwave, Lold wave and Atmospheric Blocking * High bis in autocorrelation— greater temperature persistence.

* Land Heatwave and Cold Wave: For each grid point, daily temperature exceedance is * Increased persistence raises the chance of exceeding the 3-day threshold for heatwave

computed as the difference between the daily mean 2-meter air temperature and the 90th- q P t 9 y —— - —
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. » . . : attern linked to enhanced Greenland blocking, while HIRAM fails to capture these
exceedance remains positive for at least three consecutive days. Cold waves are defined 5. Main Takeaways for heatwave and cold waves | . p_ | J P
analogously, using the 10th percentile and requiring negative exceedance for three days. » How well can the frequency of heatwaves and cold waves be simulated by prescribing SIgnals.

- Atmospheric Blocking: A 2D gradient-based index applied to 500-hPa geopotential height only observed SST and SIC? 4. Main Takeaways for atmospheric blocking
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glassified as blgocked when these gradients indicate a reversal to easterly flow, with America (Reasons and discussion can be seen In the paper). * Large ensemble simulations show SST-forced blocking frequency variabilities,
westerlios to the north and south J y TIOW,  How well do DL-based GCMs reproduce heatwave and cold wave frequencies during the correlated with 20CR.

4 Dataset out-of-sample period 1900-1960 when compared with reanalysis datasets and a » Large ensemble simulations filter out internal atmospheric variability, thereby isolating

. 20th Century Reanalysis Version 3 (20CRv3: 1836-2015): 80 members, SST&SIC as traditional physical GCM? the SST-forced signal
boundary conditions and assimilate pressure data. DL-based GCMs successiully simulate out-of-sample (1900-1960) heat and cold wave » For atmospheric blockings, signal from the SST is smaller than the noise from

« Berkeley Earth (BE): Surface Temperature Instrumental Observations. frequencies with skill comparable to a physical model atmospheric internal noise.




