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1. The Model Hierarchy

2. Simulation Protocol (AMIP-style)
• Forcing: All models were driven by historical observed Sea Surface Temperatures (SST) 

and Sea Ice Concentration (SIC) from HadISST with random initial conditions.
• Timeline: Simulations covered 1900–2020.
• The Generalization Test: In-Sample (1980–2020): Period used to train the AI models; Out-

of-Sample (1900–1960): The critical validation period. Can AI models simulate weather 
patterns from a climate they have never "seen"?

3. Defining the Extremes – Heatwave, Cold wave and Atmospheric Blocking
• Land Heatwave and Cold Wave: For each grid point, daily temperature exceedance is 

computed as the difference between the daily mean 2-meter air temperature and the 90th-
percentile temperature for that calendar day, where the percentile is estimated using a 15-
day moving window across all available years. A heatwave is identified when this 
exceedance remains positive for at least three consecutive days. Cold waves are defined 
analogously, using the 10th percentile and requiring negative exceedance for three days.

• Atmospheric Blocking: A 2D gradient-based index applied to 500-hPa geopotential height 
(Davini et al. 2020). For each grid point from 30°–75°N, we compute three meridional height 
gradients using latitudes 15° and 30° to the south and 15° to the north. A location is 
classified as blocked when these gradients indicate a reversal to easterly flow, with 
westerlies to the north and south.

4. Dataset
• 20th Century Reanalysis Version 3 (20CRv3; 1836–2015): 80 members, SST&SIC as 

boundary conditions and assimilate pressure data.
• Berkeley Earth (BE): Surface Temperature Instrumental Observations.

1. Heatwave Climatology – Models tend to overestimate frequencies 

2. Global Mean Heatwave Frequencies

3. Spatial Correlation (1900 ~ 1960)

4. Why the Models overestimate the frequencies relative to 20CRv3?

• High correlation for global 
mean frequencies.

• Models overestimate 
heatwave frequencies. 

• Cold waves show similar 
behavior (not shown). 

• Positive Correlation except North American 
and Asian (Model vs. 20CRv3).

• Positive Correlation everywhere. (Model vs. 
Model)

• DL Models’ skill is comparable to a physical 
model in simulating heatwave and cold 
waves

• Positive autocorrelation differences (vs. 20CR) align with frequency overestimation 
regions

• High bis in autocorrelation→ greater temperature persistence.
• Increased persistence raises the chance of exceeding the 3-day threshold for heatwave 

or cold wave events.

5. Main Takeaways for heatwave and cold waves
• How well can the frequency of heatwaves and cold waves be simulated by prescribing 

only observed SST and SIC?
High correlation for global mean frequency; Positive correlation except North Asian and 
America (Reasons and discussion can be seen in the paper).
• How well do DL-based GCMs reproduce heatwave and cold wave frequencies during the 

out-of-sample period 1900–1960 when compared with reanalysis datasets and a 
traditional physical GCM?

DL-based GCMs successfully simulate out-of-sample (1900–1960) heat and cold wave 
frequencies with skill comparable to a physical model

1. Blocking Climatology (1980~2010)– (DL) models are more consistent with ERA5

2. Spatial correlations (vs. 20CR, 1900~2010) Central circle : NH-averaged correlation 
weighted by blocking frequency and area.
Contour: Blocking Frequency Climatology.

• With larger ensemble, DL 
models outperform HiRAM — 
correlations higher by ~two 
orders of magnitude when 
compared the correlation with 
20CRv3.

• Out-of-sample period (1900-
1960) shows similar skills.

• Large ensemble simulations filter out internal atmospheric variability, thereby isolating 
the SST-forced signal, leading to high correlations (see Greenland Example)

3. Example – Greenland Blocking Frequencies

Correlation (5-member HiRAM vs. 
reanalysis) = 0.14
Correlation (100-member DL AMIP vs. 
reanalysis) = 0.45 

Large-ensemble (n = 100) DL 
models (DLESYM and NGCM) 
successfully capture the observed 
range of Greenland blocking 
variability, with ensemble means 
showing moderate correlations 
(~0.45) with reanalysis.

DL models and reanalysis show a clear North Atlantic tripole and El Niño–like SST 
pattern linked to enhanced Greenland blocking, while HiRAM fails to capture these 
signals.

Correlation between Greenland Blocking Frequency and SST

4. Main Takeaways for atmospheric blocking
• Deep learning (DL) models’ climatology is more consistent with ERA5.
• Large ensemble simulations show SST-forced blocking frequency variabilities, 
correlated with 20CR.
• Large ensemble simulations filter out internal atmospheric variability, thereby isolating 
the SST-forced signal
• For atmospheric blockings, signal from the SST is smaller than the noise from 
atmospheric internal noise.
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Scientific Goals
• Validation: To rigorously test if Deep Learning (DL) atmospheric models

(DLESYM, NGCM) can reproduce historical extreme weathers (1900-1960) 
outside their training period as reliably as physical models. 

• Attribution: To utilize the speed of DL models to generate massive ensembles 
(100 members), allowing us to isolate the influence of Sea Surface Temperature 
(SST) variability on atmospheric blocking and temperature extremes.

Large Ensemble AMIP Simulations Mean = Signal from Boundary Conditions (SST) 
Real World Observations = Internal atmospheric variability+ Signal from Boundary Conditions 


