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ABSTRACT: “Online” data assimilation (DA) is used to generate a seasonal-resolution reanalysis dataset over the last
millennium by combining forecasts from an ocean—atmosphere—sea ice coupled linear inverse model with climate proxy re-
cords. Instrumental verification reveals that this reconstruction achieves the highest correlation skill while using fewer
proxies in surface temperature reconstructions compared to other paleo-DA products, particularly during boreal winter
when proxy data are scarce. Reconstructed ocean and sea ice variables also have high correlation with instrumental and
satellite datasets. Verification against independent proxy records shows that reconstruction skill is robust throughout the
last millennium. Analysis of the results reveals that the method effectively captures the seasonal evolution and amplitude
of El Nifio events, seasonal temperature trends that are consistent with orbital forcing over the last millennium, and polar-
amplified cooling in the transition from the medieval climate anomaly to the little ice age.

SIGNIFICANCE STATEMENT: This paper introduces a new seasonal-resolution reanalysis of the last millennium,
based on an “online” data assimilation method using a linear inverse model to assimilate paleoclimate proxies. We find
good agreement when verifying the reconstruction against modern instrumental reanalyses and out-of-sample proxies.
Results show that seasonal temperature trends are similar to predictions from orbital-insolation trends, and seasonal
variability of modern El Nifno events is similar to instrumental reanalyses. This framework offers a dynamically consis-
tent, seasonally resolved view of past climate variability that supports broader applications in paleoclimate research.
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1. Introduction

Reconstructions of past climate are essential for under-
standing the dynamics of the long-term climate system. Such
reconstructions are particularly important in the context of
global warming (Pachauri et al. 2007), as they place contem-
porary climate variability within a larger sample of past cli-
mate. This historical and long-term perspective also enhances
our ability to improve projections of future climate change by
providing a reference against which model simulations can be
compared. Before the instrumental era, when humans began
using scientific tools to record weather and climate informa-
tion like temperature and precipitation, climate information is
primarily derived from natural proxies such as tree rings, cor-
als, and ice cores. For example, the width of some tree rings
reflects local moisture and temperature stress (e.g., Briffa et al.
2004). This information can be used to reconstruct past cli-
mate conditions. The challenges of using proxies to recon-
struct past climate include their uneven spatial distribution,
inconsistent temporal coverage, varying temporal resolution,
complex relationships with physical drivers, and complex
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noise characteristics (e.g., Christiansen and Ljungqvist 2017),
complicating multiproxy interpretations of climate variability.
Recently, data assimilation (DA) methods (e.g., Bouttier and
Courtier 2002) have been increasingly used to reconstruct
past climates (e.g., Dirren and Hakim 2005; Goosse et al.
2010; Widmann et al. 2010; Franke et al. 2017; Perkins and
Hakim 2021; Tardif et al. 2019; Steiger et al. 2018; Valler et al.
2024). This approach combines climate model physical con-
straints with proxy data to reconstruct climate variables. One
of the most significant advantages of DA is that it allows for
the reconstruction of variables not directly represented by
the proxies (Hakim et al. 2016). For example, we can use tem-
perature data from proxies to infer sea ice conditions and geo-
potential height, as there are strong and well-understood
correlations among these variables (e.g., Hakim et al. 2016;
Steiger et al. 2018; Brennan 2022; Brennan and Hakim 2022;
Meng and Hakim 2024).

A general and flexible paleoclimate DA (PDA) framework,
the Last Millennium Reanalysis (LMR), was proposed by
Hakim et al. (2016) for reconstructing climate variables over
the Common Era. The success of this framework has been fol-
lowed by extensive research on PDA (e.g., Steiger et al. 2017;
Dee et al. 2020; Sun et al. 2022; Luo et al. 2022; Meng and
Hakim 2024; Zhu et al. 2023; Okazaki et al. 2021; Hu et al.
2024). One practical limitation of PDA compared to weather
DA is the high cost of forecasts that generate the prior (“first
guess”) because of the need for long integrations of climate
models (e.g., Taylor et al. 2012). Consequently, the initial
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LMR framework used an “offline” DA method, where the
prior is sampled from a static source, such as existing climate
model simulations. This approach is particularly relevant in
paleoclimate applications, where the forecast skill of dynami-
cal climate models may be limited and the computational cost
of running those models is high.

There are, however, patterns of variability, such as the Pa-
cific decadal oscillation (PDO) (e.g., Mantua and Hare 2002)
and El Nino-Southern Oscillation (ENSO) (e.g., McPhaden
et al. 2006; Meng and Li 2024), that persist on seasonal to in-
terannual time scales. Developing “online” PDA methods
that exploit this persistence can lead to more accurate recon-
structions since the memory of past proxies is transmitted into
the future by the forecast model. Using DA with a skillful
coupled atmosphere—ocean model, information from terres-
trial proxies such as tree-ring width can be used to inform
ocean state estimates, which then carry memory in the model
forecast through ocean persistence. An example of this online
PDA approach is shown by Perkins and Hakim (2021), who
used a linear inverse model (LIM) to reconstruct climate
fields over the last millennium and found improved represen-
tations of decadal variability.

A significant challenge with PDA reconstructions is resolv-
ing the seasonal cycle. For example, proxies from Northern
Hemisphere trees, including tree-ring width (TRW) and late-
wood density, primarily reflect warm-season temperature
(PAGES2k Consortium 2013, 2017). Previous PDA studies have
used this information to reconstruct annual-mean climate vari-
ability, leading to biases in the reconstructions and inconsistent
results for significant climate periods such as the medieval climate
anomaly and the little ice age (PAGES2k Consortium 2017,
Hakim et al. 2016; Tardif et al. 2019; Steiger et al. 2018). Here,
we present results for a seasonal reconstruction of the last mil-
lennium using online PDA. We use a LIM to forecast one sea-
son to the next: from March-May (MAM) to June-August
(JJA), from JJA to September—November (SON), from SON
to December-February (DJF), and from DJF to the next year.

The LIM incorporates sea ice variables (concentration and thick-
ness), recognizing the long-lead memory of sea ice (Blanchard-
Wrigglesworth et al. 2011) and therefore predictive skill, espe-
cially near the Arctic where seasonal variability is large. We
assimilate proxies from the PAGES2k V2 (PAGES2k Consortium
2017) database at the season specific to each proxy. Proxies that
represent annual-mean conditions are assimilated subsequently
once an annual-mean forecast is available from the initial LIM
forecast from seasonal proxies only.

The organization of the remainder of the paper is as fol-
lows. Section 2 details the PDA methods and data used in this
study, and section 3 presents instrumental and proxy verifica-
tion to measure the accuracy of the reconstruction. Section 4
applies the reconstruction to analyze seasonal climate vari-
ability and trends over the last millennium. Section 5 provides
a concluding discussion.

2. LMR-seasonal framework data and methods

The LMR-seasonal approach utilizes an online “cycling”
DA framework, consisting of three components, with the goal
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TABLE 1. Variables reconstructed in LMR seasonal and their
spatial coverage.

Variable Description Spatial coverage
TAS 2-m air temperature Global (2° X 2°)
TOS Sea surface temperature Global (2° X 2°)
OHC300  Ocean heat content (0-300 m)  Global (2° X 2°)
SIT Sea ice thickness (NH) NH (2° X 2°)
SIC Sea ice concentration (NH) NH (2° X 2°)

of reconstructing a subset of atmosphere-ocean—sea ice fields
(Table 1). The first component involves a simplified climate
model, a LIM trained for seasonal forecasting as described
in section 2a. The second component, proxy system models,
which estimate the proxies from the prior, are trained as
described in section 2b. The third component is an ensemble
Kalman filter (EnKF), which is used to combine the proxy
and prior as described in section 2c.

a. LIM

Linear inverse models are a computationally efficient, widely
applied, and skillful method for predicting climate fields (e.g.,
Penland and Magorian 1993; Penland and Sardeshmukh 1995;
Newman 2013; Perkins and Hakim 2020; Meng and Hakim
2024). A LIM captures linear dynamics of anomalies about a
mean state:

dx

E:Lx-ﬁ-f, @

where x is the state vector. The L is a matrix representing de-
terministic dynamics, and & is a random noise vector, which is
temporally uncorrelated but may have correlations in the state
space x. For a stable linear system, the real part of the eigen-
values of L is negative (Penland and Magorian 1993).

In this study, x represents low-dimensional principal compo-
nents (PCs) derived from a truncated set of empirical orthogo-
nal functions (EOFs) (e.g., Meng et al. 2023). EOF truncation
is applied to individual variables of interest, including 2-m air
temperature (TAS), sea surface temperature (TOS), ocean
heat content from 300 m to the surface (OHC300), Northern
Hemisphere (NH) sea ice thickness (SIT), and NH sea ice con-
centration (SIC) using SACPY (Meng et al. 2023; Meng and
Li 2024). We do not include Southern Hemisphere (SH) sea
ice due to the sparseness of SH paleoclimate proxies and
known challenges in reconciling climate model simulations of
SH sea ice with observations (Roach et al. 2020). This selec-
tion of variables is guided by two primary considerations:
1) We limit the number of PCs within the LIM to prevent
overfitting, which could degrade the quality of reconstructions;
and 2) we exclude high-frequency atmospheric variables such
as sea level pressure (SLP) to avoid reducing the forecast skill
of the primary variables of interest. We include both TAS and
TOS in the LIM state vector to ensure that important variability
over both land (TAS) and ocean (TOS) regions is captured, as
demonstrated in Fig. S1 in the online supplemental material. This
choice is necessary because we assimilate temperature-sensitive
proxies located over both land and ocean. For all variables except
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FIG. 1. Proxies from PAGES2k V2 (PAGES2k Consortium 2017). (a) Locations and counts of proxy types after
filtering by the specified standards indicated by section 2b. (b) Evolution of the number of proxies over time.
(c),(d) Spatial distribution of PSM calibration correlations and 1-yr lag residual (error) autocorrelations.

OHC300, we select the first 15 PCs, which account for around
80% of the total variance of each variable. Following Perkins and
Hakim (2020), we select 30 PCs for OHC300 to better capture
the extended memory of this variable within the LIM. Thus, the
state vector is defined as

X = [PC¥AS’ PC%OS* PC(T)Hcsoow PCngw PCglc]TA

@

LINEAR INVERSE MODEL TRAINING PROCESS

We utilize output from two models in the Coupled Model
Intercomparison Project phase 5 (CMIPS) Last Millennium
experiments, specifically CCSM4 and MPI-ESM-R (Taylor
et al. 2012). We choose these models primarily to maintain
consistency with LMR v1 (Hakim et al. 2016), LMR v2 (Tardif
et al. 2019), and LMR online (Perkins and Hakim 2021). Further-
more, seasonal climate variability statistics have not changed sig-
nificantly from CMIP5 to CMIP6 (Brown et al. 2020). The LIM is
trained separately on data from CCSM4 and MPI-ESM-R to cap-
ture the internal covariability and physical relationships specific to
each parent model. We define four seasons by 3-month averages:
MAM, JJA, SON, and DJF. Prior to taking the seasonal average,
model output data are placed on a 2° X 2° latitude-longitude grid
using linear interpolation in the Climate Data Operators package
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(Schulzweida et al. 2019), and the last millennium trend for each
month is removed by simple linear regression.

EOF analysis on area-weighted variables yields the first
15 PCs for each variable (30 PCs for OHC300). Then, L is cal-
culated by

L =+ ! InC(1)C(0) " (3)
Here, C(7) is the 7-lag covariance matrix of x, C(7) = (x(7)x"(0)),
where “()” represents a sample average. Here, 7 is 3 months for
our seasonal LIM. The stochastic part of the dynamics & has co-
variance matrix Q, such that (££7) = Q. The matrix Q is calcu-
lated based on stationary statistics:

dc(o) _
dr

LC(0) + COLT + Q = 0. 4)
Using Q and L, stochastic integration of (1) yields a sample
trajectory using the two-step integration process of Penland
and Matrosova (1994):

X, 5 = (Lt + Dx, + QVASta, Q)

©)

_ 1
Xiroin = E(XH& + Xz)’
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FIG. 2. LMR seasonal update strategy. The light-blue box represents the ensemble, the rose
box represents the proxy, and the pink arrow represents the forecast step from the LIM. Curly
brackets denote the update from the EnKF to integrate the proxy data into updating the prior
ensemble. The text within the box indicates the seasonality of either the ensemble or the

proxies.

where &t is the integration time step, set at 6 h for this study;
| is the identity matrix, Q denotes the matrix where columns
are eigenvectors of Q, and A is the diagonal matrix of eigen-
values of Q; a is a vector of independent standard normal
random variables. We exclude eigenvectors associated with
negative eigenvalues in Q and normalize the remaining ei-
genvalues to preserve total variance, following Penland and
Matrosova (1994) and Perkins and Hakim (2020). A com-
plete derivation of the LIM is provided in the supplemental
appendix. After training the LIM on output from CCSM4 and
MPI-ESM-R Last Millennium simulations (850-1850 CE) (Taylor
et al. 2012), the LIM demonstrates predictive skill to at least
12 months as evidenced by out-of-sample tests shown in
Figs. S2 and S3.

b. PSMs

We use the temperature-sensitive PAGES2k V2 dataset
(PAGES2k Consortium 2017) as the observational inputs for
our data assimilation process. The PAGES2k V2 dataset com-
prises approximately 700 proxy records, mainly from tree
rings, corals, and ice cores. We calibrate proxy system models
(PSMs) for each proxy record, using only surface temperatures
from GISTEMP v4 (Lenssen et al. 2019) for terrestrial proxies
and sea surface temperature (SST) from ERSST v5 (Huang
et al. 2017) for marine records. Precipitation and other mois-
ture variables are not included in the PSM calibration. Com-
parisons with calibration on other instrumental observations,

such as Berkeley Earth (Rohde and Hausfather 2020) and
MLOST (Smith et al. 2008), yield similar results (not shown).

The truncated EOF basis of the LIM does not fully resolve
local details of climate fields such as surface temperature and
SST, which is a “representativeness” error we account for by
calibrating the PSMs in the EOF-truncated space, X = UUTx,
where UT is the matrix with the first 15 PCs derived from
EOF analysis:

y=Hx + e @)
Here, H is the matrix that maps the climate variables to the
proxy data, y, and € is the error term.

As will be discussed in section 2c, an important factor for
data assimilation is the observation error covariance matrix
R = (e€’). Hakim et al. (2022) employ linear regression to es-
timate H and a full covariance matrix R. In our study, we
adopt a similar method but with a diagonal R, implying zero
error covariance among errors for the proxy PSMs. The use
of a full R matrix is impractical because the calibration period
does not provide a sufficiently long overlap between each of
the proxies to estimate the off-diagonal terms, and tests sug-
gest that the diagonal values of R are several orders of magni-
tude larger than the off-diagonal elements (not shown).

SEASONALITY

Seasonality refers to the specific season that a proxy’s tem-
perature represents. Tardif et al. (2019) assessed both expert-

TABLE 2. Summary of DA products over the Last Millennium.

Name PDA method Nproxy” Time resolution Reference
PHYDA Offline 2978 (Sub)Annual® Steiger et al. (2018)
LMR v2 Offline 2250 Annual Tardif et al. (2019)
LMR online Online 545 Annual Perkins and Hakim (2021)
LMR seasonal Online 521 Seasonal® This study

aNproxy denotes the total number of proxies for data assimilation.

®«(Sub)Annual” refers to PHYDA's time resolutions finer than a year because it has the annual mean, DJF, and JJA reconstructions,

and monthly Nifio-3.4 index reconstructions.

““Seasonal” refers to 4 time steps (MAM, JJA, SON, and DJF) every year.
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FIG. 3. Annual-mean surface temperature instrumental verification. (a)—(d) Correlation between various DA recon-
struction’s ensemble mean and HadCRUTS (Morice et al. 2021) 2-m air temperature during 1880-2000. Results are
shown for (a) LMR seasonal, (b) LMRv2, (c) PHYDA, and (d) LMR online, with the global-mean correlation and
the number of used proxies given in the title for each subpanel. Correlation differences between (a) LMR seasonal
and other reconstructions are shown for (¢) LMRv2, (f) PHYDA, and (g) LMR online, with global-mean correlation
differences indicated in the titles. Black dots show the correlation difference values passing the confidence level of

95% using Williams test (Williams 1959).

based seasonality, derived from PAGES2k metadata, and ob-
jectively determined seasonality, given by the best correlation
with instrumental data during PSM calibration. We evaluate
both definitions of seasonality and find no significant differences
in calibration results (cf. Fig. 1 with Fig. S4), or in the PDA re-
sults as measured by instrumental verification (cf. Fig. 3 with
Fig. S5; and Fig. 4 with Fig. S6) and independent proxies (cf.
Fig. 12 with Fig. S15; see section 3). We therefore use the objec-
tively determined seasonality to maintain consistency with LMR
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v2 (Tardif et al. 2019) and LMR online (Perkins and Hakim
2021). We note that subseasonal coral records are averaged to
seasonal resolution (DJF, MAM, JJA, and SON) for PSM cali-
bration and assimilation.

We remove proxies from assimilation if they have an insig-
nificant correlation with local temperature or high temporal
error autocorrelation. Specifically, we remove proxies that
have a PSM calibration correlation below 0.05 or a 1-yr lag
autocorrelation in PSM calibration residuals exceeding 0.90.



7234

-09 -0.6

-03 00 03 06 09
Correlation (vs. HadCRUT5)

JOURNAL OF CLIMATE

VOLUME 38

e PHYDA DJF (mean = 0. 37)

g LMR Seasonal - PHYDA DJF (mean = 0.07)

h LMR Seasonal

j'PHYDA JJA (mean = 0.01)

-03 00 03 06 09
Correlation Difference (g, h)

-0.9 -0.6

FIG. 4. (a)-(d) Surface temperature seasonal instrumental verification. The correlations between the LMR seasonal
ensemble mean and HadCRUTS5 (Morice et al. 2021). For (a) DJF, (c) MAM, (b) JJA, and (d) SON during 1880—
2000. (e),(f). Correlations between PHYDA and HadCRUTS are shown for (e) DJF and (f) JJA. (g).(h) The correla-
tion differences between LMR seasonal and PHYDA in (g) DJF and (h) JJA. Black dots show the correlation differ-
ence values passing the confidence level of 95% using Williams test (Williams 1959).

As shown in Fig. 1, some Pacific corals have high PSM cali-
bration correlation but also a 1-yr-lag error autocorrelation.
High error autocorrelation is problematic for Kalman filters,
which assume that observation errors are uncorrelated in
time.

¢. Ensemble Kalman filter and update strategy

Here, we introduce the update strategy for our seasonal re-
construction, which is based on an ensemble implementation
of the Kalman filter (e.g., Evensen 2003).

Brought to you by University of Washington Libraries | Unauthenticated | Downloaded 11/21/25 04:28 AM UTC

1) ENSEMBLE KALMAN FILTER

The EnKEF is extensively applied in a variety of paleo-DA
tasks and has consistently shown strong performance (Hakim
et al. 2016; Franke et al. 2017; Perkins and Hakim 2021; Steiger
et al. 2018; Zhu et al. 2022; Valler et al. 2024). The primary step
in the EnKF process is the “update”:

x, = x, + Kly = H(x)], (8)

where x, represents the posterior (“analysis”) state vector,
x,, denotes the prior state vector, and H is the observation
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FIG. 5. Ocean heat content from 300 m to the surface (OHC300) instrumental verification. Correlation between the
LMR seasonal OHC300 ensemble mean and HadleyEN4 OHC300 (Good et al. 2013) over the period 1940-2000 for
(a) the annual mean, (b) DJF, (c) JJA, (d) MAM, and (e) SON. Global-mean correlations are indicated in the titles.

operator that maps to the corresponding observation vector
(i.e., the PSMs). Matrix K, the Kalman gain, is defined by

K = BH'[HBH" + R] !, 9)

where B is the prior covariance matrix and H is the lineariza-
tion of H. The matrix R is the observation error covariance
matrix derived from Eq. (7). Given that all PSMs in this study
are linear, H = H. To solve (8) and (9) using ensemble sam-
pling, we employ the ensemble square root filter (EnSRF)
method (Whitaker and Hamill 2002) incorporating a serial
observation update strategy. For the kth proxy, whose value
is yx, the update proceeds by separating the ensemble into the
ensemble mean (X) and perturbations (x]):

X=X +X. (10)
For the ensemble mean X, the update equation is
L COV(X,, Vo) L

Xll = XP + p_-¢ (yk - ye’k)a (11)

Var(ye’k) + R,

where y, denotes the kth proxy estimate from the ensemble, rep-
resented as Yex =Ver + y;,k, and R, is the kth proxy error
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variance. The “var” and “cov” operators denote the variance and
covariance, respectively. Ensemble perturbations x; are update by

-1
cov(x,, ¥, .)
var(ye’k) +R,

ro_ ot 1+ Rk
Yo = Xp \/var(ye’k) + R,

(}’;,k)-

(12)

This ensemble update is completed for the ith member using
(10) to obtain the full analysis state. In this study, the ensem-
ble size is 800, which allows us to avoid ensemble inflation
and localization methods (e.g., Anderson 2012). Localization
techniques are complicated by the EOF state space of the
LIM, so we use an ensemble large enough to minimize the
need for such localization.

2) SEASONAL UPDATE STRATEGY

Unlike previous PDA reconstructions (e.g., Hakim et al. 2016;
Steiger et al. 2018; Tardif et al. 2019; Perkins and Hakim 2021)
that use seasonal proxies to update the annual mean, our ap-
proach updates specific seasons corresponding to the proxy sea-
sonality. An example illustration of this update strategy is shown
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FIG. 6. NH SIC instrumental verification. Correlation between the LMR seasonal SIC ensemble
mean and satellite SIC data (Fetterer et al. 2017) during 1980-2000 is presented for the (a) annual
mean, (b) DJF, (c) JJA, (d) MAM, and (e) SON. Global-mean correlations are indicated in the titles.
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F1G. 7. NH SIA verification. Temporal comparison of the LMR seasonal reconstructed NH SIA series (colored
curves) against Piomas20c (Schweiger et al. 2019) SIA (black solid curve), and satellite STA (Fetterer et al. 2017) (red
dashed curve) in the (a) annual mean, (b) DJF, (c) MAM, (d) JJA, and (e) SON. The reference time period for anom-
alies is 1980-2000. Dark shading denotes the ensemble interquartile range, and light shading denotes the 0.5%-99.5%

interval.

in Fig. 2 for three proxies having different seasonality: DJF,
MAMIJA, and DJFMAMIJASON. When the LIM forecast
completes the DJF season, the DJF proxy is used to update
the DJF prior ensemble. Subsequently, the LIM advances by
updating the state to the MAM and JJA seasons. Upon reach-
ing JJA, the MAMJJA proxy is used to update the MAM and
JJA ensembles. Finally, when the LIM ensemble progresses to
the SON season, the DJFMAMIJJASON proxy is used to up-
date the DJF, MAM, JJA, and SON ensembles. In summary,
our methodology emphasizes a season-to-season update mech-
anism. This novel update strategy has a significant impact on
reconstructions of the differences between the medieval cli-
mate anomaly (MCA) and little ice age (LIA), as discussed in
section 4.

d. Verification metrics and significance test

We validate the LMR seasonal reconstruction against both
calibration and reanalysis datasets (discussed below) using
two primary verification metrics: correlation,

1w @ —%)(v, - v
COIT = - Y M’ (13)
i=1

0,0,
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and the coefficient of efficiency (CE) (Nash and Sutcliffe 1970),

.z (v; = xi)z
CE=1-%2L . (14)
Zw-

Here, an overbar (X) represents a mean value, o represents
the standard deviation, 7 is the number of temporal samples,
and x and v represent the reconstructed and verification val-
ues, respectively. Correlation measures errors in signal timing,
whereas CE measures errors in signal timing and amplitude.

To assess whether the correlation skill of LMR seasonal is sig-
nificantly different from that of other datasets, we employ the
Williams test (Williams 1959). This test is specifically designed to
compare two correlation coefficients that are statistically depen-
dent because they share a common variable, and it accounts for
this dependency using the correlation between the two predic-
tors. Specifically, let X represents our reconstruction, Y repre-
sents another PDA product, and Z represents the instrumental
verification dataset. The goal is to test whether the correlation
between X and Z (r,,) is significantly different from that between
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F1G. 8. GMT instrumental verification. Temporal verification of the ensemble mean LMR seasonal reconstructed

GMT series (colored curves) against HadCRUTS (Morice et al. 2021) GMT (black solid curve) in (a) annual mean,
(b) DJF, (c) MAM, (d) JJA, and (e) SON. The reference time period for anomalies is 1950-80. For each reconstruc-
tion, dark shading denotes the ensemble interquartile range, and light shading denotes the 0.5%-99.5% interval.

R = correlation.

Y and Z (ry;), accounting for the correlation between X and
Y (ry). The Williams test statistic is calculated as

1-r72 -7
= (rxz - ryz)/\/( = =

+ erzryzrxy)(l + rxy)
2(n — 3) ’

(15)

— 42
rxy

where 7 is the sample size. Under the null hypothesis that
T'y; = Iy, the test statistic approximately follows a ¢ distribu-
tion with (n — 3) degrees of freedom.

e. Comparisons to other PDA last millennium
reconstructions

To assess agreement with other PDA products, we com-
pare our results to three DA products over the last millen-
nium: PHYDA (Steiger et al. 2018), LMR v2 (Tardif et al.
2019), and LMR online (Perkins and Hakim 2021). Details
on the DA methods, proxy number, and time resolution for
each product are given in Table 2. Besides LMR seasonal,
only PHYDA provides reconstructions for DJF and JJA
(but not for SON or MAM), while LMR v2 and LMR

Brought to you

online are limited to annual means. A significant distinction
between the online and offline DA methods involves
whether the prior is derived from random (time indepen-
dent) draws from an existing climate model simulation (off-
line) or from a forecast of the analysis at the previous
assimilation time (online). An advantage of the online DA
method is that the “memory” of past proxy information is
carried to the next assimilation time. This feature is particu-
larly vital for our seasonal DA approach, as NH trees are
the dominant source of the climate signal and are primarily
sensitive to summer growing conditions. With online DA,
the JJA posterior, for example, serves as the initial condi-
tion for the SON prior, informing the SON and future sea-
son’s reconstructions. This results in more information
persisting into seasons with fewer proxies (e.g., winter and

spring).

3. Verification

We verify our reconstruction using instrumental observa-
tions and proxy data, as described below. For instrumental
verification, we use 2-m air temperature from HadCRUTS

by
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FI1G. 9. Niflo-3.4 index instrumental verification. Temporal verification of the ensemble mean LMR seasonal recon-
structed Nifio-3.4 index (colored curves) against HadISST (Rayner et al. 2003) (black solid curve) in (a) all seasons,
(b) DIJF, (c) MAM, (d) JJA, and (e) SON. Dark shading denotes the interquartile range, and light shading denotes

the 0.5%-99.5% interval.

(Morice et al. 2021) and the ERA-20C reanalysis (Poli et al.
2016), ocean temperature data from Hadley EN4 (Good et al.
2013), SST from HadISST (Rayner et al. 2003), sea ice con-
centration from the satellite dataset of Fetterer et al. (2017),
and NH sea ice concentration and sea ice thickness from
PIOMAS20C (Schweiger et al. 2019). For proxy data verifica-
tion, we use the PAGES2k V2 dataset (PAGES2k Consortium
2017) by withholding some proxies from assimilation using the
bootstrap procedure described below.

a. Instrumental verification

Measured by correlation with the HadCRUTS instrumental
dataset during 1880-2000 CE, the LMR seasonal reconstruc-
tion skill in annual-mean 2-m air temperature is similar to or
better than other reconstructions in the global mean (Fig. 3)
despite assimilating fewer proxies. The spatial correlation pat-
tern shows that LMR seasonal performs better than LMR v2
primarily in Europe, the North Pacific Ocean, the Indian
Ocean, and the South Atlantic Ocean, but less well over the
Southern Ocean and portions of Asia. Compared to PHYDA,
the most pronounced differences are found in the Southern
Ocean and the Indian Ocean. Similar results are found when
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verifying against the ERA-20C reanalysis (Figs. S7 and S8).
The limited number of proxies in the Southern Hemisphere
means that the main signal for reconstructing the Southern
Ocean relies heavily on long-distance teleconnections in the
model prior. Since we do not use covariance localization, it is
possible that bias in the Southern Ocean teleconnections from
LIM forecasts degrades the performance of LMR seasonal in
this location. We note that in Antarctica, where there are
abundant ice core records (e.g., Steig et al. 2013; Stenni et al.
2017), the reconstructions perform comparatively well, with
LMR seasonal generally being superior.

Seasonal verification against HadCRUTS reveals that LMR
seasonal has skill globally with positive correlations almost ev-
erywhere (Fig. 4). Compared to PHYDA, which is the only
other reconstruction that includes DJF and JJA reconstruc-
tions, LMR seasonal performs relatively better during DJF
than JJA, which we attribute to the sparse proxy data during
DJF compared to JJA. PHYDA performs better during
Northern Hemisphere summer, particularly over North
America and Eurasia, which we attribute to the much larger
number of tree-ring proxies that PHYDA assimilates in
these locations.
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dots show the composite SST anomaly values passing the confidence level of 95% using the Student’s ¢ test.

We also compare LMR seasonal with ModE-RA, a monthly
offline DA product (Valler et al. 2024) from 1421 to 1900, as
shown in Figs. S9 and S10. The correlation is largest in the
locations and seasons when proxy availability is highest: JJA
over western North America, central Asia, and northern
Europe. This shows that the information content from the
proxies is similar in both reconstructions, but how that infor-
mation is spread in space and time is different. We attribute
this to 1) the state-dependent prior covariances in LMR sea-
sonal (static in ModE-RA), and 2) the way in which informa-
tion is transmitted from times of high proxy availability to low
(summer to winter). After 1900, ModE-RA assimilates a large
number of instrumental observations, which results in higher cor-
relations with LMR seasonal.
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We verify upper 300-m ocean heat content (OHC300)
against the Hadley EN4 dataset (Good et al. 2013) (Fig. 5)
and Arctic SIC against the satellite observations of Fetterer
et al. (2017) (Fig. 6). Despite not incorporating any direct ob-
servations of these quantities, the LMR seasonal reconstruc-
tion shows high correlation with the verification datasets. For
OHC300, skill is highest in the tropical Pacific, the eastern
North Pacific, and northern Atlantic Ocean regions. Skill in
SIC is highest in Hudson Bay and near sea ice edges, espe-
cially around Greenland and the Barents Sea. Skill is lowest
in the Beaufort Sea during DJF and MAM, seasons where
proxies are least abundant. In contrast, SIC generally exhibits
higher correlations in JJA compared to other seasons. We
speculate that this is due to SIC having a stronger correlation
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interval.

with 2-m air temperature in JJA compared to other seasons
(Blanchard-Wrigglesworth et al. 2011).

Furthermore, we also compare NH sea ice area (SIA) and
sea ice volume (SIV) with PIOMAS20C (Schweiger et al.
2019), which is produced by forcing a sea ice model with the
ERA20C atmospheric reanalysis (Fig. 7, and Fig. S12). Dis-
crepancies appear in the early twentieth century: PIOMAS-
20C shows a rapid increase in SIA around 1900, likely due to
sensitivity to the initial conditions (PIOMAS20C is initialized
with HadISST, version 2.1.0.0), whereas the rest of the twenti-
eth century shows much better agreement. The more persis-
tent quantity, SIV, shows differences through the first half of
the twentieth century. LMR seasonal, which begins data as-
similation in 700 CE, benefits from proxy information before
1901 and thus avoids abrupt early century adjustments. We
also compare LMR seasonal STA with TAPICE1 (Semenov
et al. 2024), which reconstructs SIC for March and September
during 1901-2019 based on the statistical covariability be-
tween sea ice concentration, sea surface temperature, and sea
level pressure. LMR seasonal shows less temporal variance in
sea ice area, which we attribute to ensemble averaging and the
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fewer numbers of proxies relative to instrumental observations
(see supplemental Fig. 11). We also compare sea ice extent
(SIE) with the August reconstruction from Kinnard et al.
(2011) over the last millennium (supplemental Fig. 14). Their
reconstruction also exhibits greater temporal variability, likely
due to its focus on a single month (August), in contrast to the
seasonal (JJA) resolution used in LMR seasonal, and ensem-
ble averaging in LMR seasonal. The correlation between the
two reconstructions is 0.26.

Comparing the LMR seasonal global mean temperature
(GMT) and Nifo-3.4 index with values from the instrumental
datasets HadCRUTS and HadISST shows highly skillful re-
constructions (Figs. 8 and 9). Specifically, GMT has a correla-
tion with HadCRUTS of about 0.9 in all seasons and in the
annual mean. The Nifio-3.4 index, which represents the intensity
of ENSO, shows a correlation (CE) around 0.8 (0.55) in all sea-
sons. The use of seasonal coral data significantly improves the ac-
curacy of the reconstruction compared to annualized coral data,
which shows a correlation (CE) of approximately 0.7 (0.3) with
the annual coral reconstructions and HadISST (not shown). In
addition, compared to PHYDA, our reconstruction has
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higher correlation and CE in all seasons except in JJA’s cor-
relation (Fig. S13). The greatest contribution to improved
ENSO reconstruction likely comes from the online DA
scheme since ENSO exhibits forecast skill on seasonal to an-
nual time scales (McPhaden et al. 2006; Perkins and Hakim
2020; Meng and Hakim 2024; Meng and Li 2024); informa-
tion from the previous season persists to subsequent sea-
sons, providing a more accurate prior.

The ENSO reconstruction allows us to investigate the vari-
ability of El Nifio over the last millennium with a much larger
sample than is available during the instrumental period. Fol-
lowing Wang et al. (2019), we categorize El Nifio events into
four classes based on their onset-phase evolution: strong basin
wide (SBW), moderate eastern Pacific (MEP), moderate cen-
tral Pacific (MCP), and successive. The composite analysis of
El Nifio cases from 1900 to 2000 based on this classification is
illustrated in Fig. 10. As described by Wang et al. (2019),
SBW events are characterized by a combination of eastward
SST anomalies (SSTAs) from the western Pacific and west-
ward SSTA from the eastern Pacific, leading to strong warm-
ing events (“super El Nifio”). In contrast, MEP and MCP
events are defined by westward and eastward SSTA from the
eastern and western Pacific, respectively, resulting in moderate
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warming. Successive cases describe two consecutive years of
sustained El Nifio conditions. Compared to HadISST data, the
LMR seasonal reconstruction successfully captures most of
the seasonal evolution of these four El Nifio classes, although
the amplitude of the SBW and MEP cases is smaller in the re-
construction than in HadISST. The most significant discrepan-
cies occur for MCP due to the small sample size (three events)
since most cases are after the year 2000; many regions still
align well with HadISST observations. Furthermore, as de-
picted in Fig. 11, all four SBW cases demonstrate consistent
evolution with the reconstructed Nifo-3.4 index evolution,
closely following the HadISST time series. In comparison,
the PHYDA reconstruction does not align as closely with
HadISST, especially during JJA and SON.

In summary, instrumental verification shows that the LMR
seasonal reconstruction faithfully captures a wide range of
coupled atmosphere—ocean-sea ice climate variability in space
and time during the instrumental period.

b. Independent proxy verification

To assess the robustness of LMR seasonal in the preinstru-
mental period (800-1850 CE), we validate against proxies left
out of the assimilation process following Hakim et al. (2016).
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We employ the bootstrap method, randomly omitting 20% of
the proxies and conducting DA across 50 epochs. For each ep-
och, the proxies are forward modeled from the reconstructed
climate states using the PSM (7) for each proxy, yielding a di-
rect comparison of the LMR seasonal reconstruction to both
the assimilated and independent proxy chronologies. The
comparison is summarized by the time series correlation be-
tween the reconstructed and actual proxy time series. For the
assimilated proxies, we find that the distribution of correlation
values during the calibration and precalibration periods is
very similar, suggesting a robust PSM relationship (Fig. 12).
Results for nonassimilated proxies are similar, but with some-
what lower correlation values. There are no significant differences
between these results and those when seasonality is defined by
the expert-based seasonality defined in the PAGES2K database
results (cf. Fig. 12 and Fig. S15). This indicates that the results are
insensitive to the exact definition of proxy seasonality.

4. Last millennium seasonal temperature trends,
medieval climate anomaly, and little ice age

From 850 to 1850 CE, most proxy evidence suggests that
Earth experienced a cooling climate trend driven by orbital
forcing and significant volcanic eruptions (McGregor et al.
2015). We compare our reconstructed seasonal temperature
trends with seasonal trends from the CCSM4 Last Millennium
simulation, as depicted in Fig. 13 and Fig. S16. Both the re-
constructed and modeled trends show enhanced cooling in
DIJF and SON relative to MAM and JJA, which have smaller
trends. This seasonal difference is attributed to the delayed
climate response to orbital forcing (Fig. 13b, red dashed
curve), as discussed by Liicke et al. (2021). It is important to
note that the LIM trained on this model simulation has no
trend and no season-specific variability (i.e., a single LIM is
used for all seasons); the reconstructed seasonal trends arise
solely from assimilation of proxy data.

Over the Last Millennium, two significant periods of multi-
centennial climate variability are the MCA and the LIA. Fol-
lowing Mann et al. (2009), we define the MCA as the period
from 950 to 1250 CE and the LIA from 1400 to 1700 CE.
Comparing the annual-mean global-mean temperature in
LMR seasonal with three other reconstructions, we find that
LMR seasonal has larger multicentennial variability, espe-
cially with respect to the MCA-LIA difference (Fig. 14a).
The spatial pattern of temperature differences between these
two time periods (MCA-LIA) reveals a common pattern of
Arctic-amplified warming among the reconstructions (Figs.
14b-e). Notable differences are the much larger amplitude
signal in LMR seasonal and the opposite sign of tropical Pa-
cific temperature difference when compared with PYHDA.
Moreover, LMR seasonal shows an MCA-LIA pattern over
parts of Antarctica and the Southern Ocean that is mostly ab-
sent in the other reconstructions. This pattern is consistent
with the independent temperature reconstruction of Orsi et al.
(2012) based on a borehole thermometry analysis in West
Antarctica (Fig. S17). We attribute these high-latitude differ-
ences to polar amplification having larger amplitude on
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Fi1G. 13. Comparison of LM GMT trends for LMR seasonal and
the climate model LM simulations. (a) The GMT trend for the an-
nual mean and each season. The gray bar denotes the CCSM4 LM
simulation, and the colors denote LMR seasonal. Error bars indi-
cate the 90% ensemble confidence interval. (b) The GMT trends
for the annual mean (gray bar) and each month (orange solid line)
from the Last Millennium CMIP5 multimodel large ensemble
(CCSM4, CESM-LME, CSIRO-MK3L-1-2, MPI-ESM-P, IPSL-
CM5A-LR, and HadCM3) (Taylor et al. 2012). The top-of-
atmosphere insolation trend (right y axis) is shown as the red
dashed line (Laskar et al. 2004). Error bars and orange shading
represent the central 90% confidence interval.

seasonal time scales, which leads to more signal in the annual
mean (Fig. S18).

As discussed above with regard to seasonal temperature
trends, summer exhibits the least cooling trend over the last
millennium, attributable to differences in insolation trends
and seasonal lag due to ocean heat content (Liicke et al.
2021). Most proxies, especially NH tree-ring width and late-
wood density, predominantly record JJA temperatures (e.g.,
Briffa et al. 1992; Anchukaitis et al. 2017). Annual-mean
data assimilation dilutes the influence of JJA proxies, which
likely reduces cooling trends over the Last Millennium. Our
seasonal-update strategy ensures that connections between
seasons are dynamically connected by the LIM, rather than
static as in offline DA approaches. We hypothesize that these
factors collectively contribute to the distinct differences we
observe between the MCA and LIA. To test this hypothesis,
we perform another experiment, allowing seasonal proxies to
update only the annual mean during assimilation. Results
show that the global-mean temperature difference between
the MCA and LIA decreases by 30%, from 0.15° to 0.10°C. In
this case, our seasonal-update strategy appears to be essential
to reconstructing the magnitude of the MCA-LIA difference.

Differences between the MCA and LIA are also evident in
sea ice area, sea ice volume, and OHC300 (Fig. 15). Specifi-
cally, sea ice area increases around 5% from 1.1 X 10" to
1.15 X 10" m? from the MCA to the LIA. Sea ice volume in-
creases by about 11% from 3.5 X 10" to 3.9 x 10"* m® which
we attribute to the longer persistence time of sea ice volume
relative to area (Guemas et al. 2016). Compared to the sea ice
area reconstruction of Brennan and Hakim (2022), we find
largely similar centennial-scale results (Fig. 15a). In particular,
both reconstructions show a decline in sea ice area that began
in the early 19th century and continues to the present. LMR
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FIG. 14. Differences between the MCA (950-1250 CE) and LIA (1400-1700 CE) in four DA reconstructions.
(a) GMT 20-yr running mean in LMR seasonal (red), LMRV2 (yellow), LMR online (green), and PHYDA (blue).
The black solid curve represents the LMR seasonal unsmoothed GMT, dark shading denotes the interquartile range,
and light shading denotes the central 99% confidence interval. (b)—(e) Global temperature pattern differences be-
tween the MCA and LIA from (b) LMR seasonal, (c¢) LMRv2, (d) PHYDA, and (e¢) LMR online. Hatching denotes
regions that do not pass the 95% confidence level according to Student’s ¢ test.

seasonal has less amplitude on decadal time scales, which is
especially evident during the early twentieth century warming
(1920-50). We attribute this difference to weak covariability
between 2-m air temperature and sea ice in the CCSM4 LM
simulation, which Brennan and Hakim (2022) rectified with
covariance inflation; here, we do not use covariance inflation.
Finally, we note that differences in OHC300 show a decrease
from the MCA to the LIA of about 1-1.5 X 10 J m 2, or an
average of about 10 mW m™2. We note that the overall trend
in ocean heat content is similar to that shown in Gebbie and
Huybers (2019).

5. Discussion and conclusions

This study introduces LMR seasonal, a new reconstruction
of coupled atmosphere—ocean—sea ice climate variability over
the Last Millennium, using a novel seasonal “online” data as-
similation method and a new seasonal update strategy. The
reconstruction is skillful in both space and time when com-
pared with instrumental observations across the climate
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variables considered. Skill is primarily attributed to the effi-
cient utilization of proxy information, allowing for updates to
model forecasts during assimilation that accurately reflect sea-
sonal variability in the proxies. Additionally, verification
against independent (nonassimilated) proxies shows the ro-
bustness of the reconstruction in the preinstrumental period.
We used the new reconstruction to examine two key meas-
ures of climate variability over the last millennium: ENSO
and preinstrumental trends related to the transition from the
medieval climate anomaly to the little ice age. For ENSO,
LMR seasonal is able to accurately capture the space-time
evolution of tropical SST for four different ENSO categories
during the twentieth century. Given the large increase in sam-
ple size of ENSO over the last millennium compared to the
twentieth and twenty-first centuries, LMR seasonal poten-
tially offers a new resource for ENSO research. For tempera-
ture trends of the last millennium, we find that LMR seasonal
captures seasonal variability consistent with orbital forcing,
including polar amplification. Moreover, LMR seasonal dem-
onstrates a pronounced distinction between the medieval
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FIG. 15. Time series of Arctic sea ice (a) area and (b) volume,
and (c) upper 300-m ocean heat content anomaly over the last mil-
lennium. The solid colored lines represent the ensemble mean,
black solid lines denote the 30-yr running means, dark shading de-
notes the interquartile range, and light shading denotes the central
99% confidence interval. The red dashed line (BH2022) in (a) is the
30-yr running mean of SIA from Brennan and Hakim (2022). Light-
orange shading denotes the MCA, and light-blue shading denotes
the LIA.

climate anomaly (MCA) and the little ice age (LIA), consis-
tent with established climatological studies. This distinction is
significantly enhanced by the seasonal updating scheme,
which ensures that summer-biased proxies do not dilute the
cooler signatures of other seasons during the LIA.

While the LMR seasonal framework is not specifically opti-
mized for sea ice reconstruction, it nonetheless demonstrates
reasonable skill compared to previous studies in capturing
large-scale sea ice variability, justifying the inclusion of sea ice
in our coupled DA system.

Future studies could expand upon this work by incorporat-
ing additional proxy data and exploring regional climate
events during the Last Millennium with much larger samples
than are available with instrumental reanalyses. Moreover,
extending this approach to reconstructions at finer spatial res-
olution could provide deeper insights into regional climate
phenomena and their global implications.
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