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W% EREFAGHEHFANRELGREIAEERRREMF 5 LR TRNA LA —, FEHTNFARES
WG, BEEHE R T ARENHRERINF, ANTRARKRILGHERE. RATFHREENZ LI HES
BRAXNAMERFE, MENERHERNEL —FFAORRT &, AL EEIERRA T EEREL, Uxs
MEMERY, AMEFEIREZNERLE. AXRRLE TAFREASE N EHRERLTR R AL LE.
HRER T & AREE R E G LIEE, NET ERRMT R R e mE A, KRR LE R &,
BFlan LG 5] iR R R AE A FI M R B RBEHBRERLGBER BN BT EARKEFRCHEA, FAETER
RARMFNENER, FRETHAFENREEMEETE; AR ARRAL LT Ho AR RNEINE

EHESERMEALE; &5, AXEHITT FEEER MR RBRNFE AP, RET KRR AT M.

Kbl HERGHEERL, RALH, BULER, KAAHARER, THTKE

1 515

W AR A B T R S AR AL A R e B
B A A 1 . PPA A B A X, DT sk
KRS IR B AR TN, e 55 A] KRl & Jre (5%,
2022) . AR ORI AR ST ST T TR
PR k. WESA ACILE, A
BRSOV, EE SR dE T s bl .

AR TR R B & U S A . W
B AR, R TARERT B R R A 0 F5 PA-
GES2K#(#i4E (Past Global Changes 2k) (PAGES2k Consor-
tium, 2017). Mann09%#E4E (Mann%s, 2009), 4#rit
RO R HE 22 A 36 Temperature  12ka(Kaufman%s,

2020) . WA H AR FPORM ARG A (Arctic Holocene
Proxy Climate Database)(SundqvistZ:, 2014). LegacyCli-
mate 1.08HEAE (Herzschuhs:, 2023)%5, AMAH £ FT
FHTE R B AR B, B A i 5% CoralHydro2k %k
PELE (Walterd, 2023) . A LR SASILEMELE (Comas-
Bruds, 2020)% ., XA hyid ZA AR By
S A T DTk

TE i AR, BRI L B4 (Pa-
leoclimate Modelling Intercomparison Project, PMIP)— K
) T A AR AT O B i 25 A X ARAS TR i 3 114 e
BL, HED, ®oriPMIPARLULRE kA, W& Tdx
TAF B AR 540 (past1000) , LA K 4ttt (Mid-Holo-
cene, MH). KKK (Last Glacial Maximum,
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LGM). KKEJVKM (Last Interglacial, LIG). v Frith
(mid-Pliocene) . ## HER3], DAL i MIEECO
(Early Eocene) . PETM(Paleocene-Eocene Thermal Max-
imum ) Ffllpre-PETM (pre-Paleocene-Eocene Thermal Max-
imum ) =~ 8 Y B 9] 55 7 A AL (Kageyama 55
2018) WMELLMBHEBIE Tl L THEZ W ES
ML L (Community Earth System Model-Last Millen-
nium Ensemble, CESM-LME) (Otto-Bliesner%s, 2016) .
P B U R Aok 25 P T-AE A 4D 46 (NNU-2ka ) (AL
G, 2016)5F At B 1Y) 3% 2 5k B AL 45 7 e Ui
O R A A 36 (NNU-Holocene ) ( J7 % 16 45
2020) ., HERE BRI T HT- 1. 5kail 5
(Tian%5, 2020) . FEE g -3 B s TR T T
MPI-ESMAE IR 40 (Baderss, 2020) ., & E I 5
L3 FHadCM3H LAY 5 (Hoperoftfll Valdes, 2021,
2022) . Fi SR ER R EE R A2 L T EC-Earth B U 1055
(Zhang%:, 2021)%; LGMK Y 14 SLBF AR AR 56
F5TraCE-21kaif 5% (Simulation of the Transient Climate of
the Last 21000 Years) (Liu%, 2009), PAKAHY
[]1% Z AYiTraCE-2 1kaif 4% (Isotope-enabled Simulation of
the Transient Climate of the Last 21000 Years)(He%%,
2021) 5 A TR wt £3077 4F 09 B AL i AL (Xie
45, 2019; Yan%F, 2023). CEEASLLSE LR HRAE AN R AR
TERY By S AL A T i
EWEXAESBNES, flant R 2
JERLERORE, B EANELL H A RS FATEEAER
2, B U R SUs 5 78 2 AP TE 2 it A i
(BRAIRAE, 2023); B Wl B B K i St T A8
BritzAh, b SR BORE L S 2R 22, BIRAEAN
S3HT it FR T R R B sl R S AT AR A B i A AR
HIANE E PR By gl iR 22, A PR Re R 1Y
23 (13 Bl AR X 0 A e AR 1 25 TR FELAS — 0T &
s YRR MR 2E (50T, 2013) . MIBEUEE R 2 i
A B B NTRAR R, O R Bty A=A P ) LS P
AR ALAR, T ELXE MR A 0 1 SR FE AR AN E Tk
M H, 8 SR TSR 38 A5 5377 T 5 A
L2, AFYHT F AU K AR S TG A T
W, IR O Al s T T A A HE ) (Kageyama s
2018), DRIGAERADLES R A vERf 1 75 18T T REAF e 25 .
DL, e SR 58 s S8 P O3 Es & T IR A B
MU, RARAS SRR Y B R AL, Xty
SAREAE FIEARIHE (von - Storch®, 2000). s
A ER T — DB HELE, AR ORI S, SR b 4y
SFRECH E R, Hoh U BERHR s py U2 f sk

2

-
B4R

SC, R SRR T B R A B R AE SR,
XA SRR 45 R 22 1 e Al T, Rl SR X
BT AT AR (SRS A T B IR ), I 3RAS
TR P B 28 R S I AR E A (Hakim 3%, 2013) . I
ALOL i SRR R A R AR A A B () Ak LA S []
AIBIHIL, RIS ] AN 32 22 i L0 ot £ i B A 25 (A1
WIS A B AT B, R I (A . R
AR R AL A H R PR, BRI R X4 Ry
FRAERE, HACRMY B SURTEZE, LA R A 4 4
B RN E MR A R A BT APk . N,
S SOEAE R TR R YORE, (HE M BRI E
TEE (R | KRB AR AL S ) FEE L, 1A
T B e R EE S KK AR, L 2 B A IR
N R (AL 5 A B E 2 M AR H 9B R BB (proxy
system model, PSM), Xtk 7 5IMAFIA BE2E
SR RAIR BRI o

AT HARA A, R0 s E A 4, 6l
WA R B S R (Liu%%, 2014), dnf L R4k
FePEATINE . ARl LLm it 44 i st i as @)y, 44
RV 1) A BR AN X S AR A 2s [ 40 A, TG B T 2EA#
SEBRAN X IR AT AN [ 330 B IR N, o BRI 2 A1, TRIEAER
AT DUER S by S S T 2 ) L (3] an S A Bt ),
R, AR AR nT S 2%
MATT, AT AR s o R AR R 0 %) 1 s s S sg i, A2
T SRR R RS (F 27, 2022).

ZHIEH DA AR IR ik A
J5 T ARCT TR A B (R, 20165 5K SRR,
2025; TierneysF, 2025b), AR, HAUREHRERIILRY
Bk R LR RS T XA TR EES (SunE,
2022; MengfilHakim, 2024), FEHEA RN Z B
AR LA R LR EPSM M AR R R4 55, B T 2 i)
WRTE. P, A SCHS a7 B Iy e 5000 [R) A i B
D5 RN A TR K SR, A A G LA iy
SARBAE R AL 2 A F AR (il n, AR ARG )
SRR Al SAREE [ AL b r T I A S . HER L Bk
P25 7 T AR ) U A TR, TR SEA X SRR
I ) A i S S R 2 ) T A 107 ) R oA R o7 1% . A
BT T A TR

2 Wi B A

RO, oty SRR SR, R
VORSRAGETT, Zia a2 RIS R, X2
T RS MO AR T . ORI T (e g DLt
HTFEIE
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P(x|y) o< P(y | x) P(x) (D
Hrr, xFRRERNAAEE, yFRRHTR, P&
ARG AR LR SRR, P(y | 0)FR SR R EL, I
2 SRR T R BRI, P(x | )FRRFLZ S
BRI RN RS, BIEES R . hA AL
Fil, RARMLREE IR S8 RUA A O, H %
B [RIAK 09545 77 77 1) A 4 v T X6 35K P o R Al T RSK s
IS, RO, SR R Ak 32 BT DU 2 R
g5, mr AL ARHBORE, AAHBERE R G AL | [Flfk
Ak ARG R (EID), EXTE—mTZ, B, X
SRR g, SRR A U T LR EE . AE
Rk sl R0, R PR R GBI RNR S
WAt R RIS BER 25 ], IR RZ T 21 B S a4
BORME 538 1 R R GBI AL B A BORME 2Z 1]
M2 5, XA 22 e A R R A rh /R <3 257 (Bl innova-
tion); fefi, TR T 2 BRI R 2Z R TE
2SR, IR T X eI A T T T DAt 2]

JE U] (Posterior estimate) (Talagrand, 1997). #RJ5X}
T—mZl, EE RS, A R R B A R s
FTERAIL S Y [l fh2h

FESE o B AR B A ST 2, M X B
L SN T UK SO 5 = RN E19] 1 1 0 = e 1 = =78
BT A B R AL A A 3 AR b sth s 30 . R DR U
BRESR/RSUEN, MEiraELREL L E2) . T
AT 8] B 2R LA JURP 572 i S B S 0

2.1 PiibastuE T

AR 5t 38 T Y — PP O A i — A~ 5iRaE
T, AT A R 2 A0 J A WL 4 ] 4k 7574 (Hoke I
Anthes, 1976), HEARNR N
Q//n:f(l//nfl)_’_aHT(dn*l_H(l//n*l))_‘_é_rn (2)
Horp, w e RZIOBOIRAS, S, IEZIAPIR Ay "'
BRELS . ase AN SE T AL, H e R R A e 4 3 WL

A RIS |
EfE X,= X, +W(y — V.) 1% F Tnnovation
X By -~
@ §g§,’l’{§)”mxn =%, + K- ¥2) y=ve

(EnSRF)

BTRE  x, =
(PF)

HaiEik

(Nudging)

([ EHSEED )

EATHRERX =X + P,H'(R + HP,H" )" (y — Hx;)

N
Z Wi Xp;
=1

Xo = Xp+ (Y —Xp)

[ RAEZEE ‘

aRERER K
T, P, 8180,
SST, SSSZ%
T
SRR RAEGHRGRL R AR TONE
X, WEER  — M EYIER(LUM) y
ISR BT EYAREE(LMM)
WEAREY VS-Litet£&(VSL)
1) % Q:Z[ bz - s %
AFER A"%ﬁ_ P& (ANN) KSR ESEE
Ye = H(xb)
Bl b SR A S HE A
2000 L~ 2006 2014 2020 5
= - h S A
AR S IE T LT U8 H£EFRREIEH AR KBV CLK (¥ 434 B2k
KUMA RIS,
(von Storch®%, 2000)  (Goose§, 2006a, 2006b: (Steiger¥, 2014, 2018; IRAMERILEE FI/RBIER.
Shi%, 2019, 2020; Hakim®, 2016; L FALAE
Lyu4s, 2024) Tardif%, 2019; (Tierney%s, 2020;

Fang?, 2019, 2022)

Osman®%, 2021;
Sun %, 2022, 2024;
Meng%s, 2024)

B2 B R A i



ZEEE T, d" et B 2R, &R

Pyt 3 ) FE L RR AR B, A S,
HARECR o i HSSm R, FA i i AR
e pyAs i, DR ICAE [RI AR A e e ORI 54 7 46
PG AR, MH, RAKXATUEN, olE 7
sty T AR, SR AR St T T BB 2 T e i sk
M= A A8l 71, i 55 ARt i 2 S B A2
FNLI Y 23 (DubinkinafllGoosse, 2013). BRILZAN, «
HIE I — R Tk TR, SR

TEN T, st 268 30T 2 A 1 FH ) oy A i [
A5k o von Storch?: (2000 ) A1 A GtboaE 35 % [y 52 isp 8 )
NAOFEEGHEAT T H#, 255 BoR A Zs FAHX IS5
AT DL G A2 Dy e A B AR AL . Widmann S
(2010)FEXF Lb AL FE A 5t 18 31 78 N A = Fh R A6 7 kA &
TS A B A BT, AT LU Rt E gt
o BT AL, (A AR A SR AR R AN
[\ A B AR . DubinkinafllGoosse(2013) % H T # it i@
SR YA /18147 1L g A U B YA W8] e L B 4 U A
FIS0FE kR A AR AP R, R4y
st 388 3 7 I ORI Y A8 B (AN R ER ) [l 4k Dy T %
PRI HA P Fp 73, PR LT S it i 8 )1 3 2
ZE, At 3 AR o AU B R AR I o D
HTs

2.2 R TDEDE
KL DE D A A A, T DL g AR Al ot
— A FEAUBECREARL - BEAT A, i iR A A9 B4

oA o HJF MR A0 (1 H 5 A X (Dubinkina il
Goosse, 2013)H

M
p(y"ld") = Z o/o(y"—v") 3)
i=1

Hr, cREEE, o 2B MR FIRE, HitEA
KA
=K 'pd"

4 in) 4

b, KRB RE, p(a” | v YRR MY
ISR

KIS IR, BT BRI g 2 s A
(Dubinkinaf1Goosse, 2013), AT ZEERBEMINFISE5:
TR OC AR o LB Sy, W B4 vy 50 e 1 ot
BRI H A M IUAGE m /> R SRR A

TERLFUEI R FIH R HI b, Z2 R R RL T8,
RS 358 BB g 30 WL 1) — B E Ry ek, VRN

4

— B [RAL I BR 251 (Goosse s, 2006; Widmann%s,
2010) . Goosse5 (2006 ) H T &I Ab b &k 7 vk % 1t 2
TAEAEER ST T, [OE TRk (301)
I PR AS R T DA AR RS0 SR — B AR
TEJG R B — 2ot 5T v, R U8 I BRAA st ST A T L
B, BIanaTE SR A A TAE (Widmann%s, 20105 Du-
binkinafllGoosse, 2013). FgkLF IR YR
Widmann5 (2010 )45 fi £k ARz 7 S8 35 07 FH 21 6 RR A i,
[Ffbdr, Z8 TR 2R R, BRI T
VAR (BAUAE SR ) o X Ui, FFR IR 08 i
ULk TR AR IR, DubinkinafliGoosse (2013 )t & Ik
FUEDE AT DAAR Gy Hh T B ) AR B (AR L)
TR SN T AR S A R T U8 o ek T UE I 1 ek
P71, Dubinkina% (2011 ) flAnnanf{lHargreaves(2012)
FERLF IR PN T AR 22 RAETTIE . RIR AR 258
KAEIFRAERL TR, R SR L fai A ks U8 I A i
FEE

FER Dy e By IR, BR T A XTI A A 1Y
B, AR IR AN R T ARIE . AR AR L
ST XA K B HE P (KleinfllGoosse, 20183 Shi%,
2019; Lyu%§, 2024), WS THRAFISCR . Filiei
PEAIIFIE (Lyuss, 2024) FEKebr -8 i 7 FH 21 R 36 28 XUk
K EA TG E R, T 2T 600 k1, KK+
PEWE T ARG I8 PO SR K i AE ek 3 1 &R,
A5 2 B Rl A4 2R

2.3 HEABARIR2IENE

B ESRIR BB (ensemble Kalman filter, EnKF)
JEAT JUAF S5 BCE [R) AL AU 07 FH Lo 3 )32 B —F oy vk
(Hakim%, 2016; Tardif%§, 2019; Tierney%¥, 2020; Li
85, 20245 WudE, 2025). HIEANHE SRR
R BRI A I 220 O S B, e BEARHIHE AR Y
AN E M SN R 25 Wy 25k A oA, AR A AR A
IAERE TGRS T 75 SR 22 B 7 22 AR R A A T T
HEAMRAF N
x*=x"+ K[y~ H(x")] (5)
Hor, x*RFEER, xR, S A—A
BRI P RAF BRI RAEARRNN, Fan A 1Y TR
ABHULR, y 2R, HRR et s AU
HebRA AL HIVOR RGN . y— H (x")2 A T LK
S m iR, KRR GHER, kL
by — H (xR 34 LR B (<) 2, JUH
A=W
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K =BH[HBH'+R] ' (6)
Hrfr, BRAERAGTHAI I 22500, RSN A 22 B 7
ZHERE, HELIERCHTOR R GBI,

BRESR/REUEW TR EER L, 2R
WABOL T SRR B, T B SRR A o, 5 Tt
T, REJrEiEa, HIAE R LA S R 1k
SN LTz o HE s, ettt 2
FUXI 158 2 Ay e 3 43 A i LA 38 XL s =X 25 1 2k

FER T, AT X EnKEFAE S8 4 R)
R R T T — RS BAEIL RS . 10, Huntley
FHakim (2010) W2t T EnKF X W8I sk o5 4575 i S0
Rk SRR AP, DA BRI [ 4R
B4R IR B AR 22 {H B AL 2 A 4 3 a5 0 T) A S8OR 238
Pendergrass¥ (2012) &8, AR B I5K TACHTE
SRR, BRI T 25 5 A ARG PR DL T
[ A BE T A6 3 F e it i B o 4R & . Steiger S
(2014 ) ¥ EnKFR AR A TAEREE R ALY T, I 51%
B E S5 HT (PCA) Ikt AT TXT L, K INEnKF45 3
FEAS AVRRAE 7 B I AT, Rl R AE A GORE Jy# B
BIIXIR . ZJ5, Hakim%(2016) M Tardif% (2019) 3 —
W HEnKF J5 i E 1t 5 TAE R TR H(LMR) o 4E
K, BB LT AR M B AT BORE(HU®E, 2024,
WuZs, 2025), AR EE S (Erb%:, 2022). LGMLUL
KT IERE (Tierneyds, 2020; Osman%s, 2021)1
FETEnKF Tk,

24 {Eft

P T 2 2[R 4k T 1k SR 56 40 A7 R A AR — A s
IR, WNE A A RIS SR, B X 2 B SR A Y
1812, PR 2225 I i 2l AR 4 R A 7ok v iR aX
AR (PerkinsfilHakim, 2017, 2020). i fiPerkinsFl
Hakim (2017, 2020)7E4F R A9 IR B R s i R 4k,
FI LR EIS05 8 (linear  inverse model, LIM)X}[RIfL )
EL T STl R aees 3ty A o A e G el ih B L o o7 (S
MR, TR R ZE TR ik, Hk
TR QA RGNS 2R MR TR
L VE £ ETLIM, MengfliHakim (2024 )3 TR EE
SRR T — MEREnKFRL RS, dE—E#ET A
REPAHT A T-PEIE IR | 2 a R s 16 KU T Je 72
IR AR, POMEREE S SR ] DU £
) 24 IR A S AR A ] g Al e 1 56 2R I B8 o 2 G T
MIGEST, Fr AR TG RILIM, T R Al D) A=
A A A TR A S L, X st X e AN AR

K, FEAERTEARE SN LR 1) XN ) R R | ARiE
RO AT TR B S AR ATRLER 2 o ZERF /K R4k T IvT
B TR ICAZ AR, AEL RL oK AL TR T
IR FIER R (Perkins fllHakim, 2020), 5Bk 1k
eV

A FIFERICIC B, PR AE 2R IR AL AT K i 1Y
WCICAEBR RS, WG RSN FAL, FenilE a2
TAERT B GOR 2 M B Hu A8 BRI L (Perkins filHakim,
2020; Meng#fllHakim, 2024; Menga%, 2025), TigF*t
R B, WEPERICAZ T LITE A A R B B e 2R TR
AER TN T, X AR B R R AR A T ) AT
PEGRAAT, A L A A R A P X 2 i K RUBE AR AR Y
W IGH M 2H By, DS 5 75 02 AR AR
i, XS IARA TEE— 2P ST . ILAh, HRTITEL
[ ik 2 4 b et 0 TARE B, i S s i) B2 %) 7 £ )
T AR RO, P AR T AT &
MR, ROKREE BRI, HER RS AT REN
FHAE K B[R] B FEZR R4k o

3 WAUREAR R R

MEAER, il AR R A R AN R R o B vy
AREESU, BAFRZ R BN C X AR A N
PEAT T VRARAYEEE (TR SEMIAE, 2025), X BAEOR AR
7 W25t —>fa] AL [l

31 WAEMTAE

b 2 TAR S o AR R A5 A A B B . DA
e R B AR R AR R 5 I BT iR it AR 2 B4
FHid T AR B S A VAT B9 (10, von  Storch
45, 2000; Goosse, 2010), MAFAK, BEEICHVORI
AL, 3 KT T4F B 5 R At B 1 il 2 0k e
(Zhu%, 2023). Hrr, # A RORHLIEPAGES 2K
MannO9PHAHER A, LA S CoralHydrol  2k&5 454
8. W ARSI ZE A FEPMIPAY LM AICESM-LME$ i .
ERAEITE T, DR BARAATHE YT . A T8 . EnKF
SR BN, AR R N 8 2 1) S kL1 U AN
EnKF /. BEAh, R TAEM R EEA TR
#h, FlanSun®E (2022, 2024)HFE THIK LA G RIR
2 Y€ (analogue offline ensemble Kalman filter, AOEnKF)
AR A 1225 AR & R /R 28T (hybrid gain analogue off-
line ensemble Kalman filter, HGAOEnKF) 55, i ek
SedR AT I, e Tl AR BEE Rk T, DL
FER I TEL A I (Meng Al Hakim, 20243 Meng%s,
2025; Sunf, 2025),



MY, FEE AR A L T AR R A ROk
(Last Millennium Reanalysis, LMR)(Hakim%5, 20163
Tardif5%, 2019). KBl 184k i (Paleo Hydro-
dynamics Data Assimilation Product, PHYDA)(Steiger“¥,
2018) B AU R 270 25 T-AF A0 B0k (NNU-2ka
Reanalysis) ) (Hu%:, 2024; Wu%s, 2025), XEbgdEse
R TEEEE . Bk, ARG EERAER, SEET
AR/ 15245844 (Palmer Drought Severity Index, PDSI) .
7 RS (Intertropical Convergence Zone, ITCZ). J&
IRJE /R 5 5 (El Nifio-Southern  Oscillation, ENSO) .
FEFEAEACFRYE 3] (Pacific Decadal Oscillation, PDO). K
V9P 2R PRE 3 (Atlantic Multidecadal Oscillation,
AMO) SR

BT 250 TAE A AL R R TR iy, PR BR 1
BAURFFESL, b SR EE R w0 FH T 22 IR S
AL ML M (Zhe5, 2022) . Erb%:(2020) EA T3t
ETAEEZEMX A T2 L0, KINERAS LR
I T T ZHET R, Lyut(2024) A 1 2 TAEI RS
FENBREE, KITE L S5 5 W (Medieval  climate
anomaly, MCA)Z)/INKI (Little Ice Age, LIA)RJHEHRAT
B, MIEENAAEEFERENN®R, X5 KPHEITCZH
BB SR FEIR e N G 5 AT OC . Fang 5 (2022) 2Tk
WL IX AR FE . viGes . IVATTAR L P s SCRRA R FH AR Xt
it £ TR AU O AT T FfL, AMAMOFE S T
HZEPR AL, TACHRE AT T HAE Tk
A AR B B A RIS o

AR, W TAE AR SR R AL 2 AR 2
2, AR R KRR 5 I BT 7 HAA T e S ) S b
FJR P RFAE (Hancock S5, 2023), HFEK S5ICHTORHT
KR, EFUURIE MR 2, AR KA AL A e Pk K
(Wuf, 2025), UK, Tl M T4 H R+
W, M EPSMEE AL, PRl 26 P AR I Boid ARG ok
Rl b7 kel AT 55 -

3.2 Ak

AN 2 TAF, At R o R B iy oy s
PR AR X > — 2 2R [A] fb 7R A EnKF 5 i
ST B, Erb%:(2022) B TEnKF ik, A T2
LR AR R ARl . T R A A SRk S Tk 25 1500
DURR Wi L Yk . vKots . A1 545 bR Tempera-
ture 12kEUHG4E (KaufmanZs:, 2020), fRflzhFmIET
Had CM3ARE A AR B vK B 5F A8 12055 (Snoll %, 2022) A0
T CCSM3FER MY TraCE-2 1 kaid B (L, 2014), 4%
TR, AR R Tl ¥ iom, el 2 T4E
6

7750.09 C, XA4EH b2 By 28 3 @ 45 5 (Marcott
45, 20135 Kaufmans, 2020)%8A4%, {HHHABR LSS
(Osman%¥, 2021)Z . Ak, Erb%(2022)0MIK T 7
TP TR R, & RN TR 2 SR AR
HREFRENEN T, ICIE RS SRR Z (A
e

3.3 LGMLULE

Tierney%s (2020 ) F1Osman?5: (2021 ) 3£ FEnKF J7 ¥ %}
LGMUJCK B AR Akt 4T T RAk . Brli AR ERE A
FEAE G % 35 B A0V T AL AR bR BB 4 (3P0 Mg/
Ca, US'. TEXgq), BULEGEHHETICESMELR T4
AV IR LS R . RS R R, LOMBTE Bk
TRJE R %—6.1 C(95% B A5 X 8] —6.5—5.7 C), HitifE
B S AERURAE R34 °C (95% BASIX A H2.4-4.5 °C)
(Tierney?s, 2020). LGMPIRIRE AR 220K K+
vk MR E SRS B RRSAhRE , HRCH AMOCH!
Z K BHER ST 097254k (Osmans, 2021)., Annan%5(2022)
FETEnKFE ¥, FIH T PMIPHI AR 45 325 1 iy
6 SRR AR TR EE, EA T LGMNIE R
FEMAR . 45FBR, LGMI B R4 RARR T,
M AT ET A EE - R—4.540.9 °C, X445 8 5 Tierney %
(2020) &5 2 RIRY 25 F 20k B FAelm ks, Hit,
AT R AT ] 2 B R S W] S B S el i, (HET
PRAF A AR 235 SR 1431 R B2 LT L S 4 T M R AE AN
AT DR

3.4 HEBHEdERE

AR, ol A EHE [F) A At 0 T IR I S A Y T
o pian, Exbt Rl Er AT (PETM, 56 Ma),
Tierney % (2022) | HHEnKF /5 X PETMAY SR S A T
THEHE. TR HIEAREE T AR YOS KI5 B 5% R
(Last Glacial Maximum Reanalysis, LGMR)[R{LFETFIAY4
PRV AR BRAL . B VRN T Wi 69 PR A FRMBT 5,
JITfdt FE AU R} g — 2H 3 FiCESM A L 4h 8 AR L1
IhaER LSS R, PETMAT B SRR B Ak
5.6 “C(95% BEA5IX 0] }5.4-5.9 °C), HHHEE 1< Mschi
JEHEN6.5 C(95% E A5 X 8] 245.7-7.4 °C ) (Tierney %,
2022),

Li%F (2024 )t 3 FEnKF /7 % PETM ] 8] A B A6 34
Peohitds TEE, SRR IEIR DI CaCO,
G RIREFEHR (8'°0 . Mg/Ca. TEXgq), FHdiFH IR
BERHECGENIERL 1) 100 i B A I L5 R . [F1bah
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RER, KKCO, N8990 ppmNF 1980 ppm
(1 ppm=1 uL/L), WiiEEKpHIE R F40.46, /K510 A
M10.2 T FE33.8,

3t (5.33-2.58 Ma) J& Al AY— IR CO, Mk i 132
IT400 ppmAHL I, Tierney (2025a) FIHEnKF J5i%
X T AR A AT T E A, PSR bR
T FIEHEFR (880, Mg/Ca. TEXg), Frfdi FHAAYE
L A144PLoMIP2IR S . 23 T-CESM2/Y gt Uk
IR F21 T CESMIAYZE- Fprthiue s R . [lfksh
WoR, B IR 2 4.1 C(95% EAE X A M 3.0
53°C), HILHER S EBUEER4.8 'C (95%E(F X [H]
42.6-9.9 °C), 1 H 2518 KV U R A B 2 90 2REL
Nino MBI, Al -3 R B i 0 T 3k Ve v 66 i
T = o

JuddZ (2024) # — 2 F FHEnKF 7 3 % 5 A4
(485 Ma) Y 2R V-YIR B HE1 T T HE## (PhanDA ), frfii ]
A B2k S R T 22 B (0% T 1 b Ak 48 B B a2
(80, Mg/Ca. Ui\ TEXgq). FTHIFHRIRLITHRHE I
FiCESM80™ AL It i V) Bl I 45 5L . Rl Ak 2 R
IR, ERRCEHIREAMIERI N 11-36 'C, HUILEE SR
U R 8 C A A, T LA o A BROT- TR 1) T2 L 0K By
P T2CO M .

AR, WKW TR R LU H 24
AR IS, . EnKFSCHGHRY, LR &R EoRT 7R
Ak, At MO 2 B A T B, [Tk
PAEnKF R 3. 7ERMERIRIGGS 7 1E, o KW TAE 458
T B2 [ AL AR 2 AR R AU ZE R o 32, HLGM &
HZ AT E AT B, [FALLAD R BIgs o 32 7ElA]
R AR i, o BT AR A R AL LA 5E . 3
8'%0 . St/Ca%iEhn b E, AFrikFAL LA S 0. WA
FMFVETUARA 32, TTLGM K 5 A I B i) [ 4k LA T 1 4
(it

3.5 WATFEMEEIRES TS

i P TAERT B R B S 7 T, Hakim%5(2016)
455 PAGES 2kal 5 (B AR At 25 TAERBDIZE AR, il
ET AR . FEK . SRS S i 25 T4 1 53
FrgeBILMR . Steigers (2018) i — L B 1 a5 T-4E
B TR B R %PHYDA . Hu%% (2024) HI/E TNNU-
2ka Reanalysis, Erb%%(2022) 8 # T 48t B 5 |
Tierney AT TLGMR . PETM . ¥t WAEHAOIR
FEASETORE, XSRS B IR

R IEE T, G TR B IR 45 SRR T IR

FEK R AR Z A, A EN AR, mie
Bt S AR B AR g R EELOREE#E N, Fit
XL B P 7 R A 2 AR ) R T I 2 —, X5k
WAZAE Bl T 6T 3 S s B A AR AL AL B ) B TR A B R A
AL it

R 0, AR 2 R R IR R,
XL DIEnKFa el i AU F2, E2EA91E F A Python
m¢Matlab, £ Z Y5 45 SLMRAXT A FYLMR (Hakim
45 2016), BHERAYLMR Turbo(LMRt) (Zhu%s:, 2021)
FEcH A Climate field reconstruction cfr)(Zhu%:, 2024),
XA VAR R F Pythonifi 5 19 . 32 B A RIAB R 2=
Jessica Tierney I BABA & T 5 FLLGMRAHXT I A IRl fb. ¢
443, (DASH) (King%:, 2023), Je&RTMatlab®FHY.
TR 2% H 7% 3 A BA B & 19 EnKCF [R] 4k B30 3k 119 kg F 7Y
AOEnKFHIHGAOEnKFH 4L (Sun?s, 2022, 2024),
SR T MatlabBY o J6 5 K22 IR AN AT A & () deep-
DAL (Li%, 2024), JEEETPython R FHY, XL
AL AZ O R EnK Fal G A

3.6 Ebinbr

SR 2 8 SOVE N —F e T 2R sk R M1 FE R
N T B AR E R, TR R
P E A, Z ALk RIARER a2 T &R R
HEAS R XA G P EHLE (Liud:, 2023). 87E,
B THA FRALR BRI, AT LU iy b Jo 37 4[R]3
FAMLI BRG], A I TR PSMET X £ Fhak ik
b ) Rl R [FIAGR T RE (Tierney %, 20205 Lyus,
2024), Lyu’5(2024)ik N, LR IAS 0,
IWLMRFIPHYDA, W] LAS A i g 36 = KU AR k. IR
2, AELMEPSM 548 iYL PSMIF IR AL 3 754 A+ 4 2%
SIWE? T IFATEARNT e— T & XS o F L tEPsM
FHELMHEPSMIEA T FELE (SST) [Rlfb I 25 57

13 AFI3B 33 M FE TP EPSMIE] fL 45 S i Nino3.445
BOAAE L PSMIF] AL 45 S i Nino 3. 448 %55 WLl A4 5 1,
S5 5 s R 5 R4k %) 235 SR 359 55 LI A 265 s P R DG
(1=0.82, 0.81, p<0.01), A BEMZEIN, E3CHIDY
R LA Palmyra % 1e 55 A 61 4 WA A [R) A6 5 325 BT FH 2 B vy
22751y, HApPalmyraly YSSTHIS 05 Bk AYSSTHIX
2AZERL, EIMEI P ENSORZAS , BI85 4%
Nino3.4XIHSSTA RUFHFRAE, 7] IFHKFHFTNiIno3.445
B RS SR, WEHEANK, FEARME
ELePEPSMPY R EE R A sk, HCEE50.35, /b
TFLAMEPSMIELEE I CEH0.55 . A WAy 2 76 &2 B
Nino3 4485 2 B I ZEA K, (HAEZLEPSMIA]
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B3 FETLAEPSM(A) AL AEPSM(B) AL IR BeNino3 445 5RI (A5 R AT 1L, ABCRAE R AT B 5 2206 MR 0 R AR SC 25 13 (C, D), KD,

FEHRHOCRBZ AT, K980, LA L A IS 0,

SR AERE A,

XU, FETF R A AR A RS R AR EPSM
AL S G EPSME, AR A AR 3L TR Ul 45
Fa (AR LM PSM I 5 47 A 4R R 2R SR P A Y )
e, WEARERETS . R n] A LR R A2 AR
STl B AR bR I L PSMAG 7 1E K [Rlfh 25 SR 051 .
4 JEE

H 20004F i S 5t R BE SR s LISk, iy R4k
P [ AT S o8 P S T =B R . ASCR G
JB T S AR R A B & SR 7RSSR BERY R
AP SR S, ] DA, S BRE R R AR K
FREE BT T IRATTX D7 o sk U0 AN [] i BB A< A s 28 R i A
AL R AT, AR 25 T4 X BE a4k R Eb A it
HIRT B, [RlAk T 1k T AR S 38 A A8 A A BRI BIL A
a7, JUASEPRERE R A S R AR OE B 5 T
R BB 2, BIAnCMIPT7 v A5 i W)
fe e (Paleo-DA MIP) . PAGEs2kaft iy S A5 F-o 01t
A H (PRISM) .

WK, W AMEEIE R SRR AR E A, B 2R
W BB R EnKF 7 k52 bR bR AR W A B4 R ik,

8

A7 A — S e i DR el RS 52 35 AT T, T T M T <
oA Rl A T figp phe i SC B e TR AT, DLl i Sl itk . R
K JETT 1) DT T A T IR B

4.1 WU R T DRI G SR ]

o] 388 5 2355 A R FIASEADL 45 S DA T B 4 iy o
AR RO, Rl AR R A DG Y i R
SE L, BR TSR E AR R R AR AN,
S AEEE R AR B T e — AR FH PR R4 5 |
AT Z A 4L Herh—AS B 14 5] - 5t S 4 i
TREEFEIS RS, Erb% (2022) A R4t Be ik 25 T
4EE, (HOsman%5(2021) FiBovaZs (2021) B[Rl {25 B
R W B A R AR ORI . Erb% (2022) 380 T 6
RIS, & ISR AR AR 0 2271 I 25 T BB TR /R 1 2
R BB, ER T 22 I T TE BE e R 2 LA F
HEY RO S IR o B AR R A A — 2L
MiOsman’ (2021)INK, B 1 BkH B 91 FH 2R} A R
R BE S FECP BB, (XA KRR o 1R
S, AT AR R FIASEALL G SR 1] %) 22 513 75 2 10F
— ST, R AR 75 T AAEX AN 5 T A T Bk
BT, Hao’ (2025) 56T BRI TURWI CHFE brxt 48
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IR T THE A, RPN
B 22 5, LA BRI FIRR O Bl 5 443 B () & 2 Fn A 4P 3
TR EEY A s, T A DR B WA, 2 mTRY 22 5 R A
AL 5 SRR RN UK %) S A5 i 2 T s S ) v 26 B8 8 Tl
25, A BB k£ rh A8 WU b DX TS 00 2 A 25 -
30 H %) R ity v 243 B A s T A (Jiang 55, 2024) .4
IR AT TR B s ) S b, R E AR X
PRRER S, T PO A A P R S A B R A, O R
Ii] DX s AR FH 5 Ak 64 TR A P 26 4 e S i A P E EBRCHRARE T
FEEEHE . BATWFZT (Lin%s, 2025) %8, fCHTERH
TG TR R 20, FEEE A 2R R e 5
BIREE RS, iR AT DL R A AR 2 s
XA AN R T DT 405 1 T ] 5 1 4 T 3R R e A R e
W SE—MEAR IR AT 1Y n) 8

BT R B A SAEEREZ A1, [RALE TR g0 T
BLEIAFSE , A Xt Rl Ak AR H s e i ek 25 T4 isf
B, BT, SR TAEM T AT TR,
T A AR R B3 g ] e 2t SR ) o 4L 6 705 e 25 R
Ry, B, a2 TARER AR AR B 2 XU K BT
AL IR BN HLE] (ErbaE, 20205 Lyu?s, 2024), K
it Z TR R A TS A R P I A8 AL A PSMAE X HE 3T
H, OCHERAE T 2 T AR A R 48 A 78 LI e B A BN
AT AR UL B A 2 PSM, 59 bt 2 TR AR5 AR Y
S FAF R SO A Bk, R ug U AL A R
Y BRI AR AR o — B, A IR
YR EE RS R AR, Br A —B (R E
WO IR A AT S, SRR S 4 SR XL ] A
Blo BRTIREE . Bk, B2, s mddE R s
AT AKX 2 () A B B R T i, BIANLisE (2024)
EFXFPETMIHIBRAG ER AR BRI AR S I F A, W B
PETM ] A K R L IR 7 Bk AR 6 1 AR ZS SR AL T 456
Bl 30 TR 2 1 b S g S B A A B R R AL
TAH IR

AR, 8 XA PR AR S A A b A B BTk, AR
ARG ARG T 1 53 A — S SBR[, 2 R
B R AL HLRI BRI — AN T T . Z AT R IE 258 T
B PR B AR B 1 R A T X Gy, TR Tk
FEAE G B B [l R, iy Ak s (R (bl 25
AR L L T AT SR AR SNSRI B, AT Rk (A
B XA BRI —EAEH . I, FE 4 2 A i 1F
T, R R R S B B 45 R A AR A R
FRAE AR PYFEE (Widmanns, 2010), fEFRALERES, K
AR e [ A IR AL 5 2o A2 SR v B AL e B 0 i 3 S AR
FHEAE b AR5 B A0 04 A8 258 (Bl M ), X A/ 30 i iy

(R R AL FE T 2o A AR A0L A o oy A0 A 858w 115 5
I S PPAR PSR T AR, 4 AT SR Ah i
TR SO TP AR 25, DT B b e X T S A
AR AN TRk o

TENR 55 AR S AR T 518, AR BUR M 2 o A
B R A 285 F SR A 9 (14 CEE R4 a2 — SR ARURR
PR R, AR AR B T 2455 I b 3K R G2 10 1R 7
fb, H8 X (Tiemeys, 2020)H
Ecs = 29MT s £ o, (7)
Horr, AGMST 2 [Fl 4k T 15 B 2 FRIE I BE 4 BkoF- 2R
ML, ARJEZNFEI B AR 5RI8 , Fyco,— AALRK
W RE T e 245 Bl R i AR R an . eSS R, AR
FF, o, MBERERAGF, RS AR BEAGMSTR(H .
Tierney%s (2020) 3 T LGMRAL & By S AUt Jy3.4 °C
(95% B 5 X [8] 52.4-4.5 °C) . TierneyZs(2025a) 5T I
TR [ A BT A0t B F) Ao U 4.8 °C (90% 1 LA
X 6] 42.6-9.9 °C) . Judd (2024) 3T A= 17 1R BE [R) 4k i
I SRR ]y ~8 *C o HIb AT I, Ak i 1
Wi 25 R i o B B 3 i T, FLEE DX R AR A
R e R B i i R W R TR S o) | P N S 12
I S ) S e A B R e, R A SRR T
WA B EFE, DA T It — 4R e AR e B A 5
B R ARG I

4.2 UREHRE R AN el

UTAESR, BRI BB X el R AL O AU B
RO | RSk A AR o AN Al T AR Z Rt
X AR B X R A0 i S B T I LI - AL
KA | TR RIS TT T A3

ZHTPFR], A PR TR R Rl e 3
BPRZ —, AR S R B A VT3 R A
TEFERZHEE . A FAUN BRI AT E PR, %
Fica A B MG AREME . EERE . fillE, =
R 22 KL A SO R SRR R R iR 22, Ao
SE TS SO E M LRI, 5 AU
LR EEEM . TR BUSER A AT E TR, 72
KA RIS BIE RS REAS , RIEDLIN U 25 S ]
L0 S NP SR R S S C R ISV RS G X 1V
AT SRR L X R . i H., HATFEfe 2
KAl Z R, AR [ R FH 245 U 4h
A, ORI RS R AR

FEARH ORI BT R 22 R IR 22 Al 1+ Jr 1T, BR %
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FAR TR AT DA sk B 2 0 S B B, AR A EE
HER I A A, (R AR SR B A R fad
W, ORREfRT S EA TN, R R B T —E
i, SRE R AT T, SR R AW AR Rl ik i
R T AR

e RS, SRR . RNFENE . AFE7E
wFELL, ASEIX A PR Dk (WussE, 2025) T2
Bl TR, RiF, EFRE M, fEi R T AR
B, (BB e ARG 0 DL, R LA B i 4R X AR
B A R A C R OB (NI &5 ) S A 73504397 1 (Hu
A, 2024) MIAEERRE L, MBS
BHEATER IERIENL T, A0l 4R iR 25 Ak 2 R {72
h, WESHEEG L RNER T ARk LAk,
bR T E 2 R A A B8, i Hofth— Lo H
FHIC AR IR E IS A BORE (Can g s SCREE ) dnfe] i FH 2]
A, s E % . MIFEAS RS B PRz 22
WIS, 2 IR TORY B | e ARG B S
fiE, SRR RLG

AR H PR R G R B R 5 58 3 U7 T, S TR
i IR LR MR LI USSR &
GATIC R, A AR R . S %
B R G RI T B — W K 5 3 (Ning %, 2025a),
SR R K 2Z (B PSM B RiIEAL FHI A BB . 7RIt
FErp, BRI LR, AR R E RN R
HH 2 B A 0% RE &R G #E AL AT AR Ok (Ning %5
2025b) . {H A EE SR A AR F IR GE LR T
B2, TFERGEMIAT B . Bz A, Bl
AR 2] S B AR AR LR EPSMU A, AR AT
PIiE— #5838 (Fang MILi, 2019; Wei%d¥, 2024)., Fang
FILI(2019) T A TR 28 25 i 7 kb 1 A48 9 8 1Y)
AL MEPSM, R IUFLR AR FL 4 P [m U TV S-Lite i 7Y
W, ESE T HLAS 2R 2] iR R ok Ho Al A i R] £k 2
N AT AT

TEFACZE RS UE Jr T, W R AL i B 26 T 4%
WEs B, ARAT LU g Ha 2E A T 3 uE ,  ELAART s FH AR ¢
FEC HOTRIRZE | DIRGRECE TR AR R A TR IE (TR S )
L 2025) HXTHEREBA RO, I Y
B, 38 W SR FHRE LR BE 25 % A9 AR FH B ol 1k A7 <7 56
JE(Hakim%%, 2016; Tierney5%, 2020; OsmanZf, 2021;
WuZ, 2025) . {EIXFRIGUE 7 K10 FH ORI AN B E P
AT Ho, S EARES SRR IR F WA — 52
TR IT B AIF 9 AR ol 2l 7 %) O S0 5040 o gl F L IR R 0B 4
BGUE(Mengs, 2025). I, RAKFEHFEETIMEWR
(R A28 SR g UE 7 1% o

10

4.3 WAREIR LR A R T

e Rt r2EaR b, AR R e ik n] RATE
AURIELR R . T B 2 T R S~ RO
AR R LA TT I — 2 K

431 HARMEAELEFERML

TEFMEEIE AR LRI, BR T 5 A HE SN B4
[ R G (Sun, 2022, 2024)246, YETHIFLG
T ek A 4k (Perkins flHakim, 2020; Meng#HIHakim,
20245 Sun®F, 2025). MR, AL LS L
AW TR R A IrAE], X0 T H Y
TS 2 B ) B 372 R AT TR 124 ) BRpR S i) i e WL 27
M5BT AE LA (Meng FllHakim, 2024), XS T3 19
BRI TLIMBL R I AE LR Rl fb 7, JE T HLER
SRR LR AL A i 2 P T AR BB T o G o
Pk, AR R AR AC U PR R B A G LT (SundE
2025). HHETMAELIFIL 24 e R Hedert i L
TAEBAE ML, SR Ak o o e Ko T A Bt
FIRIAL, A i i e 42 [ AR TR I 80 KA AR LR
[FACLERT G R T L, Je—A G Tl JFH.,
FETURBE 2 2] AR R AN A AEAR 5 S D B A
o 2 K T I i S A P s DA R i e 6 e
HUE (MengflHakim, 2024; Sund¥, 2025),

432 HARMES ) A A SRS F b 8 R A

YER R R iy 2B I 2R, S s 1AL
(14 5 35 AN S FH 78 [R) Ak D7 s 1 e v e 81 B 2 4
B R — 2L M SR AR S R B SO T . 24
A, BB AR A A 78 B 22 FR AR O R B0 T
AHFS 5 P RIS RE . i, SEE AN %
ST LAY PRGSO T LIRAFENSO, [H X vk ¢ 52 Sz ke
T LA R AR 8 2R RO I T S 2 2 KA
S"BOMSEI (Liu%s, 2023). M4, KIFHIX A A 5"S0
ASAENT SRy R K i . KU | RN AL, AT
7] DL o R A AR R 2R AR 45 SR ok 5 1 X 43 (Ning
A5, 2025b), MR B EREAERC ORI R G, 5
15 B O FIB AR bR S R B L 2 5, T LAES
Bl Fe R 23 TR — A0 F ORI R TR S AR B R AE, AT LA
P R AL AR R [R] Jg b AS 2 T A A, AT LA Ao 3 A
KH ZN R RPE RS A TR . 1Ak, 7E4%
AR BERHE R P RS, el DL R TR
FHERBR XS A7 w2 e R AT o

SRIM, T BRI, TERN s AR B, AN
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N7 12 15 R b2 PR 2 SR i B 7 2250 o PR O AR B
EFRE, BN (Sanchez 5, 2021) % & BAAH UL
MITCZiRZ:, XFSPCZIX I ¥ M [F fLENSO R 45 1A
FRW, TEAERALRT I TR 22T IE . 28Ry, #EAE
ARG TH AL LR ZE WAy m AR s S . edh, KR
JEE B Ut 320 14 18 R G5 ) 26 AN RIS B B A 5 55 4 i A [
(Ning%%, 2025a), PIUAERILRYIHGE, Zh 2R deG 2
BEEFEIAEAG . YHT, BR T2k M T4F (Hakim%, 2016;
WuZs, 2025) Fi4sgrith (Erb%5, 2022) i BER FHBRASARL]
g R B RAL (Tierney®, 20205 Li%:, 2024)
ZRMYVTR L, ARS8 b K I B i AR R 2
(NiTraCEZE 45 ) AT M4 RIAL ) 1 5 B S O A &
SRR RGN REI . RIUL, B REE S
AR Re P m R AT B F A S IR, (U B — 0% LUk .

AN, AR [ A B i s TR, TR
AP e SRR B . Huntley fllHakim (2010 )38 i3
— AU R B, UL LA B A, 3 A
A7 B Lk SB[ A2 R ARG s 2, B
ORLR AR Z 1 TE AT 2 2% [l 45 RO AT LAk % .
WuiE(2025) &3, TEARHBORECRIERRT, 106
ROl Gk e i} A1 Ely N e i ] i s BP9 S0 6 S A
SR P AEAR B BORME B T RIAEBCR B3 T (Sun’,
2025). KHit, wf U s ) ik, e s
FAC RGO 3 U F BT E A A sTik. vTRAUE,
S AR L ARSI S, RO HR 5 T 10
OB SRR B OCEE E, AT DA A MR PR AT ROk
FAY A AR R R P Ay HR A e A S AL PR 4 = (O 1 0T
2016). Ak, XEEERRZ IR KW TR B[R ik
SRR, BRI B RS URAE Sy, BETIE A
FitRE.

433 L& 3 A BARAE & S ARBAE R b B9 R A

BLR 27 2 R B e bR B2 U A T ) 2
L WARZ 5 4 e [ UL T R IO S . ey
AR R T, TR 2 vk e e i HAE AR E
BRGNS T AT ZXH T
AV A A 1t (8] 19 0 B AL ) A5 3 B A9 AL (Fang AL,
2019), SR, HAHFRZE RS EEE RIS, ik 3 AT
FELJEE P IEM S (Fang MLi, 2019) FIHE (Weiss:,
2024) IXSEAE LI B B AT 2 Rt 0o AR b e, i
o At R W B BB A /D B ) S A S AR, LT
TREE 22 2T R AR T 0k R GO AR LA IR . 249K, X
ol tot 4y AL A P ASABA It T R 2 ) A 235 SRA I VB AE
HBRpa, T, PR R A Bk R G R 2k

PR VR R G, A7 AE i JA A0 1 7 XU
(Fang®%, 2022). IbAh, AR OB AR R HE )52
Wi, B TITA

bR TR 2R 240, HA L4 ) e e iy <
B R A 2o FE A R W Ty B, DR
(IRaEeas, 2023) a7 DU T RE s 5 A 2
[ ESLA IR R, eml HErs LR, N
T4 v e R 0 ] SR RN AT AR . 1T RS S T A
AR R R G R T A R KRB, aT A%
WIGREEM S . TR AR S S w2, (AR BIA
B o FEKs BAT SAgAE s B SUAFTE S DU AR TR E A T
AL /i, AT LA AP PR ORI ol b e —
A i S TV AR L, B ZFEARTEAE
RN, OB BY Tk H 8 v] 58 AR b A7 )
b AR S8 28 0 265 ik mT LRI FE 260 %) 4 B
AR TN Y, (AR GEORMR B X S5kt
REF LT S Y B AR FH R R Gopsi

B BIR B A S AGE AR AR ) A b SR AL ) 7 () Ak 40
WA EEHkz—. Flin, MengfiHakim (2024 ) K5 IR
S5 A AEAERIL R, M T — R R RS,
KIHAERG IR ER T, A S LIMAB A T
JAERf . Sun (2025 ) iF— 25 BT UR B2 21 I 45 A iR
BHEARRSIEWAE T I LW TENELEL, &R
BRI Ry e IR 25 5 B, He R LS T
LIMAS Y (14 7 2% [ A0 RT3 4 [l Ak (0 45 SR B T g, i)
JEAE RO AR ATE DL R

BEAh, MLgR2E > B N R R 25 A T, o2
FIA5E (2024) M EE T 3 T H U 28 W 2% A QiR 22 431
T, AR R S BORHER I S 2 i 2R 22 )
WA IFR2E . e e A AR R A R ep, R
5T IR T IER IR 2%, IR AT DL B8 Rk 1o FH
FE b SRR R

RPN
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