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摘要 重建古气候特征并认识古气候演变规律是地球系统科学与全球变化领域的热点问题之一，有助于认清现代暖期 

的历史地位，理解暖期背景下气候变化的特征及机制，从而改进未来气候预估精度。代用资料和数值模拟是当前古气 

候研究的两种主要手段，而古气候数据同化作为一种新兴的研究方法，有机结合古气候代用资料和数值模拟，以充分 

融合两者优势，进而提高古气候重建的准确性。本文系统总结了近年来国内外古气候数据同化领域的最新研究进展。 

首先回顾了古气候数据同化方法的历史沿革，介绍了主要同化方法的优缺点和适用性，以及最近几年同化方法的改进， 

例如机器学习方法的应用及在线同化的发展；然后按照古气候特征时段介绍了古气候数据同化的应用，特别是不同代 

用资料中的相应难点，并总结了当前开源的数据集和算法平台；然后用一个具体案例给出了耦合氧同位素的模拟结果 

在古气候同化的应用过程；最后，本文还探讨了古气候数据同化研究中未解决的问题及挑战，展望了未来的研究方向。 
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1 引言  

古气候研究有助于理解气候变化机制、确定影响环 

境的关键气候因子、评估当代气候数值模式，从而改进 

未来气候和环境变化预测，服务可持续发展（王会军， 

2022）。古气候代用资料和模式模拟是古气候研究中的两 

种主要研究方法。两者各有自己的优势，古气候代用资 

料是古气候史实的反应，而模拟结果中包括了动力机制。 

古气候代用资料是用来重建古气候的各种生物、物 

理、化学指标，过去两千年时段代用资料数据集包括PA
GES2k数据集（Past Global Changes 2k）（PAGES2k Consor
tium，2017）、Mann09数据集（Mann等，2009），全新世 

的代用资料数据集包括Temperature 12ka（Kaufman等， 

2020）、极地全新世代用资料气候数据集（Arctic Holocene 
Proxy Climate Database）（Sundqvist等，2014）、LegacyCli
mate 1.0数据集（Herzschuh等，2023）等。此外还有各种代 

用资料专题的集成数据集，例如珊瑚记录CoralHydro2k数 

据集（Walter等，2023）、石笋记录SASIL数据集（Comas- 
Bru等，2020）等。这些数据集为过去不同特征时段的古 

气候重建做出了贡献。 

在古气候模拟方面，国际古气候模拟比较计划（Pa
leoclimate Modelling Intercomparison Project，PMIP）一直 

致力于通过模拟来理解过去气候的状态和对外强迫的响 

应，目前，最新的PMIP4模拟结果已发布，包含了过去 

千年的瞬变模拟（past1000），以及中全新世（Mid-Holo
cene，MH）、末次盛冰期（Last Glacial Maximum， 
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LGM）、末次间冰期（Last Interglacial，LIG）、中上新世 

（mid-Pliocene）、始新世早期，以及古新世晚期EECO 
（Early Eocene）、PETM（Paleocene-Eocene Thermal Max
imum）和pre-PETM（pre-Paleocene-Eocene Thermal Max
i m u m ） 三 个 典 型 暖 期 等 平 衡 态 模 拟 （ K a g e y a m a 等 ，  

2018）。而连续的瞬变模拟包括了过去千年多成员集合 

模拟试验（Community Earth System Model-Last Millen
nium Ensemble，CESM-LME）（Otto-Bliesner等，2016）、 

南京师范大学过去两千年模拟试验（NNU-2ka）（王志远 

等，2016）等。全新世时段的连续瞬变模拟包括南京师 

范大学全新世模拟试验（NNU-Holocene）（万凌峰等， 

2020）、中国科学院大气物理研究所的HT-11.5ka试验 

（Tian等，2020）、德国马克斯-普朗克气象研究所基于 

MPI-ESM模式的试验（Bader等，2020）、英国哈德莱中 

心基于HadCM3模式的试验（Hopcroft和Valdes，2021， 

2022）、瑞典斯德哥尔摩大学基于EC-Earth模式的试验 

（Zhang等，2021）等；LGM以来的连续瞬变模拟试验包 

括TraCE-21ka试验（Simulation of the Transient Climate of 
the Last 21000 Years）（Liu等，2009），以及最新的耦合氧 

同位素的iTraCE-21ka试验（Isotope-enabled Simulation of 
the Transient Climate of the Last 21000 Years）（He等， 

2021）；还有涵盖过去30万年的瞬变加速模拟试验（Xie 
等，2019；Yan等，2023）。这些模拟结果为理解不同特 

征时段的古气候变化机制提供了帮助。 

但两者又有着各自的劣势，例如古气候代用资料多 

是单点资料，时空上不连续且分布不均匀；存在定年误 

差，且部分代用资料的气候指示意义存在多解性和争议 

（陈发虎等，2023）；主要反映温度或降水这些地面变量。 

除此之外，古气候代用资料还包含两类误差，即采样和 

分析过程中由于人为因素或者测量分析仪器本身所存在 

的不确定性而导致的器测误差，和代用资料所能代表的 

空间范围与气候模式网格所代表的空间范围不一致而导 

致的空间代表性误差（李新，2013）。而模拟结果多为模 

式本身的内部变率，无法准确反映古气候中的真实内部 

变率的位相，并且对外强迫的响应强度存在不确定性。 

而且，尽管古气候模拟致力于在外强迫和反馈方面更加 

真实，但当前主流模式研发主要用于未来气候预估和预 

测，并非重新为古气候而开发和校准的（Kageyama等， 

2018），因此在模拟结果的准确性方面可能存在偏差。所 

以，在古气候研究中需要将两者的优势结合并弥补各自 

的不足，来获得更准确的古气候特征和规律，这就是古 

气候数据同化的初衷（von Storch等，2000）。古气候数据 

同化提供了一个数学框架，从代用资料和模拟结果中分 

别提取有用信息，其中代用资料提供真实的气候变化史 

实，模拟结果提供基于物理方程的动力约束框架，通过 

对代用资料和模拟结果误差的定量估计，对古气候模式 

运行进行约束（或对模拟结果进行直接修正），从而获得 

更准确的时空连续的古气候重建（Hakim等，2013）。由此 

可见，古气候数据同化跟现代气候的数据同化具有共同 

的动机，即利用空间上不连续的观测来生成具有空间规 

则格点的再分析数据，特别是没有直接观测的变量。但 

古气候数据同化又具有其独特的挑战，即同化的对象为 

代用资料，其代表的物理意义不清楚，由此带来的转换 

算子和不确定性计算等同化步骤方面的挑战。例如，石 

笋δ 18O是指示季风强度的代用资料，但它的具体气候表 

征意义（环流强度、水汽源地变化等）存在争议，而我们 

希望用它来重建季风降水变化，因此需要借助耦合氧同 

位素的模拟结果构建非线性的代用资料系统模型（proxy 
system model，PSM），这也带来了与现代同化有显著差 

别的特殊挑战。 

由于其特有的优势，很多记录和模拟间的争议，例 

如全新世温度悖论问题（Liu等，2014），也可以通过同化 

来进行回答。同化可以通过给出连续的空间场，给出更 

精准的全球和区域气候变化空间分布，从而有助于理解 

全球和区域气候对不同强迫的响应。除此之外，同化还 

可以针对古气候关注的科学问题（例如气候敏感性），通 

过给出更准确的结果，为未来预估提供更可靠的参考。 

从而，可以更好地认识现代暖期的历史地位及影响，促 

进古今气候环境研究的融合（王会军，2022）。 

之前学者已针对古气候同化的原理、方法、应用等 

方面做了详细的总结（方苗和李新，2016；张昊勋等， 

2025；Tierney等，2025b），近年来，古气候数据同化的 

算法及“在线”同化等方面又有了长足的进步（Sun等， 

2022；Meng和Hakim，2024），特别是氧同位素模拟的引 

入可以改进非线性PSM及在线同化等，引起了学界的广 

泛关注。因此，本文将简单回顾古气候数据同化的原理、 

方法和应用等方面的发展历史，重点介绍最近几年的古 

气候数据同化新方法和新技术（例如，在线同化策略）， 

然后对当前古气候数据同化中所面临的理论、技术、数 

据等方面的瓶颈问题进行探讨，在此基础上对古气候数 

据同化在古气候关键科学问题上的应用及未来应该重点 

攻关的研究方向进行展望。 

2 古气候数据同化方法及沿革  

简单来说，古气候数据同化的基本理念是，由代用 

资料来约束模式运行，结合前一时刻的模拟结果，对当 

前的气候状态做出最优的估计。其核心基于传统的贝叶 

斯理论： 
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P P Px y y x x( ) ( ) ( ) (1)

其中，x表示重建的气候变量，y表示代用资料，P x( )表 

示模式结果提供的先验概率，P y x( )表示似然函数，即 

给定气候状态下的代用资料概率，P x y( )表示同化之后 

得到的气候变量的后验概率，即同化结果。由公式可以 

看出，最终同化的结果与先验分布和似然有关。古气候 

数据同化的努力方向也集中于对这两者的估计和求解后 

验的分布. 因此，古气候数据同化主要包括四个组成部 

分，古气候模拟、代用资料、代用资料系统模型、同化 

算法。具体流程为（图1），针对某一时刻，首先，针对所 

要同化的变量，通过古气候模拟生成所需要的数据，作 

为同化的先验估计；然后，利用代用资料系统模型将先 

验估计转换到代用资料空间，并计算该时刻真实的代用 

资料值与通过代用资料系统模型估算的代用资料值之间 

的差异，这个差异在数据同化中叫作“增益”（即innova
tion）；最后，基于模式协方差和代用资料的误差来计算 

差异的权重，并将其用于对先验估计进行更新以此得到 

后验估计（Posterior estimate）（Talagrand，1997）。然后对 

下一时刻，重复上述步骤，最终生成同时具有气候史实 

和物理机制的同化结果。 

在实际的古气候数据同化研究当中，主要的区别在 

先验的估计和优化。按照其出现的时间先后，当前主流 

的古气候数据同化算法包括牛顿松弛逼近、粒子滤波、 

离线集合卡尔曼滤波，及最近的在线同化方法（图2）。下 

面简单介绍以下几种方法的原理及应用。 

2.1 牛顿松弛逼近  

牛顿松弛逼近法是一种在预测模式中添加一个强迫 

项，从而使得模式状态逐步逼近观测的同化方法（Hoke和 

Anthes，1976）。其具体公式为  

f H d H= ( ) + ( ( )) + (2)n n T n n n1 1 1

其中， n是tn时刻的模式状态，是tn 1时刻的状态 n 1的 

函数 f ， 是松弛逼近参数，H 是将模式状态转换到观测 

图 1 古气候数据同化概念框架  

图 2 古气候数据同化方法的沿革  
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空间的算子，d n是tn时刻的观测数据， n是随机噪声。 

松弛逼近的主要优势是方法简单直接，容易实现， 

且约束效果好。而其缺点也同样明显，松弛逼近只能同 

化模式输出的变量，因此在同化时需要将观测数据转换 

成模式输出的变量。而且，由公式可以看出， 决定了松 

弛逼近的强度，过强的松弛逼近可能会由于过快的收敛 

而产生错的动力，而过弱的松弛逼近会导致结果不能受 

到观测的约束（Dubinkina和Goosse，2013）。除此之外，

的选取一般基于经验来进行选择，缺少物理基础。 

在应用方面，松弛逼近是最早应用的古气候数据同 

化方法。von Storch等（2000）利用松弛逼近对历史时期的 

NAO指数进行了重建，结果显示同化结果相对模拟结果 

可以更好地复现历史气候的真实变化。Widmann等 

（2010）在对比包括松弛逼近在内的三种同化方法在过去 

千年北欧气候同化中的表现时，认为其可以有效地重建 

过去千年的气候变化，但却很难重建与模式内部变率不 

同的目标模态。Dubinkina和Goosse（2013）对比了松弛逼 

近、粒子滤波和融合松弛逼近的粒子滤波三种方法在过 

去150年南半球高纬度气候重建中的表现，发现单纯的 

松弛逼近在无直接观测的变量（如海表盐度）同化方面表 

现不如其他两种方法，因为其无法反映海洋动力过程。 

之后，松弛逼近在古气候数据同化研究中就较少应 

用了。 

2.2 粒子滤波  

粒子滤波的基本思想是，基于贝叶斯的似然估计对 

一组随机模式样本粒子进行加权，去逼近状态的后验概 

率分布。其后验概率分布的计算公式（Dubinkina和 

Goosse，2013）为  

( )p d( | ) = (3)n n

i

M

i
n n

i
n

=1

其中， 是核密度， i
n是每个粒子的权重，其计算公 

式为  

K p d= ( ) (4)i
n n

i
n1

其中，K是均一化系数， ( )p d n
i
n 是模式状态下观测的 

似然。 

粒子滤波的优势是，它不需要假设先验是高斯分布 

（Dubinkina和Goosse，2013），也不需要假设观测和先验 

估计存在线性关系。其缺点为，对观测数据的数量和质 

量要求高，并且会出现权重向少量粒子聚集的现象。 

在粒子滤波的早期应用中，多采用简化的粒子滤波， 

即仅选取最接近观测的一个模拟作为最优粒子，作为下 

一步同化的初始条件（Goosse等，2006；Widmann等， 

2010）。Goosse等（2006）用了简化的粒子滤波方法对过去 

千年北半球的气候进行了模拟，仅基于少量粒子（30个） 

和简单的权重计算就可以生成与记录一致的气候状态。 

在后来的一些研究中，还将粒子滤波跟松弛逼近进行比 

较，例如前面提到的两个工作（Widmann等，2010；Du
binkina和Goosse，2013）。单就粒子滤波的表现而言， 

Widmann等（2010）将简化的粒子滤波应用到北欧的温度 

同化中，复现了温度的多年代际变率，虽然他仅仅用了 

11个粒子（模拟结果）。这也说明，并未出现粒子滤波常 

见的粒子退化问题。Dubinkina和Goosse（2013）也发现粒 

子滤波可以很好地重建无直接观测的变量（如海表盐度）， 

特别是与松弛逼近相结合的粒子滤波。在粒子滤波的改 

进方面，Dubinkina等（2011）和Annan和Hargreaves（2012） 

在粒子滤波中加入了残差重采样方法，发现采用残差重 

采样的标准粒子滤波，同化结果比简化的粒子滤波有显 

著提高。 

在算法方面改进的同时，除了针对温度和环流场的 

重建，近年来粒子滤波还被应用到了东非、东亚和南美 

等更广区域的降水重建中（Klein和Goosse，2018；Shi等， 

2019；Lyu等，2024），也取得了较好的效果。特别是最 

近的研究（Lyu等，2024）在将粒子滤波应用到南美季风降 

水及环流场的重建时，选取了多于600个粒子，发现粒子 

滤波可以很好地抓住δ 18O与降水的非线性动力关系，从 

而得到更好的同化结果。 

2.3 离线集合卡尔曼滤波  

离线集合卡尔曼滤波（ensemble Kalman filter，EnKF） 

是近几年古气候数据同化领域应用比较广泛的一种方法 

（Hakim等，2016；Tardif等，2019；Tierney等，2020；Li 
等，2024；Wu等，2025）。其思想为用古气候代用指标 

的值来更新每个时刻的期望值，并通过对比代用指标的 

不确定性与观测误差协方差来分配权重，其集合思想体 

现在基于统计特征进行背景误差协方差矩阵的估计方面。 

其具体公式为  

Hx x K y x= + [ ( )] (5)a b b

其中，x a是同化结果，xb是先验估计，通常是从一个静 

态来源中采样或条件性采样得到的，例如已有的气候模 

式模拟结果，y是代用指标，H 是将先验估计转换到代用 

指标空间的代用资料系统模型， Hy x( )b 表征了观测数 

据与先验估计的差异，K为卡尔曼增益矩阵，用来表 

征 Hy x( )b 的权重并将其转换到状态（xb）空间，其计算 

公式为 
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K BH HBH R= [ + ] (6)T T 1

其中，B为先验估计的协方差矩阵，R是观测的误差协方 

差矩阵，H是线性的代用资料系统模型。 

离线集合卡尔曼滤波方法的主要优点为，在满足假 

设情况下结果精度较高，而且其求解比较容易，易于并 

行计算，系统方便搭建，因此在近几年古气候数据同化 

领域应用比较广泛。其主要缺点为，假设先验估计误差 

和观测误差为高斯分布，而且假设观测和模式结果为线 

性关系。 

在应用方面，早期的研究针对EnKF在古气候数据同 

化中的应用进行了一系列的理想化试验。例如，Huntley 
和Hakim（2010）测试了EnKF对观测站点分布的敏感性， 

发现当站点数量较少时，少量的分布合理的站点的同化 

效果跟数量很多但随机分布的站点的同化效果接近。 

Pendergrass等（2012）发现，在模式预报技巧长于代用指标 

分辨率，且气候协方差与平均态显著相关的两种情况下， 

同化技巧相对基于统计的重建显著提高。Ste iger等 

（2014）将EnKF应用在过去千年的温度同化当中，并与传 

统的主成分分析（PCA）方法进行了对比，发现EnKF结果 

在空间特征方面更加可信，特别是在代用资料更为稀疏 

的区域。之后，Hakim等（2016）和Tardif等（2019）进一步 

应用EnKF方法制作了过去千年再分析资料（LMR）。近年 

来，新出现的过去两千年的再分析资料（Hu等，2024； 

Wu等，2025）、全新世温度重建（Erb等，2022）、LGM以 

来的再分析资料（Tierney等，2020；Osman等，2021）均 

基于EnKF方法。 

2.4 在线同化  

由于离线同化方法先验分布的构建仅依赖一个静态 

来源，如已有的气候模拟结果，缺少对之前气候状态的 

记忆，因此很多学者开始尝试用在线同化方法来克服这 

个不足（Perkins和Hakim，2017，2020）。例如Perkins和 

Hakim（2017，2020）在年尺度的温度和环流场的同化中， 

利用线性倒数模型（linear inverse model，LIM）对同化的 

后验结果进行在线预测，生成下一同化时刻的先验分布。 

他们发现，在线同化方法要优于离线同化方法，其改进 

主要源自海气耦合系统的动力约束。相对于早期的在线 

同化方法多基于LIM，Meng和Hakim（2024）基于深度学 

习模型构建了一个在线EnKF同化系统，进一步重建了月 

尺度热带太平洋海表温度、经向和纬向风应力及7层海洋 

上层温度。他们发现，因为深度学习模型可以捕捉更多 

的当前和未来气候状态间的非线性关系并保留更多的预 

测能力，所以相对于传统的LIM，深度学习模型可以生 

成更准确的预测结果。而且，这些改进与区域和变量有 

关，主要集中在赤道外的纬向风应力和海表温度、赤道 

附近的海洋温度及中太平洋的温跃层。在降水同化方面， 

由于降水的记忆更低，在线同化的降水同化技巧仍低于 

温度和环流场（Perkins和Hakim，2020），与离线同化 

类似。 

由于海洋的记忆更长，因此在线同化可以将海洋的 

记忆传递给大气，从而改进大气的同化，特别是当过去 

千年时段代用资料多为陆地指标的情况（Perkins和Hakim， 

2020；Meng和Hakim，2024；Meng等，2025）。而针对 

更长时间段，海洋的记忆可以在什么尺度上帮助在线同 

化提高预测技巧，它对年代及更长尺度变化预测的可靠 

性如何，有孔虫等深海代用指标对提高长尺度变化的预 

测技巧有什么帮助，以及预测技巧是否存在对模式的依 

赖性，这些方面都有待进一步研究。此外，目前的在线 

同化多集中在过去两千年时段，而更长时间段的在线同 

化所需计算量太大，因此简单气候模式的可行性更高。 

当然，未来随着算力的提高，地球系统模式也有可能应 

用在更长时间段的在线同化。 

3 古气候数据同化的应用  

近年来，古气候数据同化应用于不同特征时段的古 

气候重建领域，取得很多成果。前人已对近年来的应用 

进行了详细的总结（张昊勋等，2025），这里从技术细节 

方面给出一个简单回顾。 

3.1 过去两千年  

过去两千年是古气候数据同化最为成熟的时段。从 

最早的古气候数据同化的引入及方法的改进，都是围绕 

着过去两千年时段的气候重建进行的（例如，von Storch 
等，2000；Goosse等，2010）。近年来，随着代用资料和 

模式的进步，过去两千年的数据同化也取得了显著进展 

（Zhu等，2023）。其中，常用的代用资料包括PAGES2k和 

Mann09两组数据集，以及最新的CoralHydrol 2k等数据 

集。常用的模拟结果包括PMIP的LM和CESM-LME数据。 

在同化方法方面，从早期的松弛逼近、粒子滤波、EnKF 
等方法均有所应用，近年来应用较多的是粒子滤波和 

EnKF方法。此外，过去两千年的同化方法也有了很大的 

进步，例如Sun等（2022，2024）研发了新的类比集合卡尔 

曼滤波（analogue offline ensemble Kalman filter，AOEnKF） 

和混合增益类比集合卡尔曼滤波（hybrid gain analogue off
line ensemble Kalman filter，HGAOEnKF）方法，通过改进 

先验分布的选取，提高了古气候数据同化技巧，以及近 

年来的在线同化方法（Meng和Hakim，2024；Meng等， 

2025；Sun等，2025）。 

中国科学：地球科学  
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当前，主要的同化数据集包括过去千年再分析资料 

（Last Millennium Reanalysis，LMR）（Hakim等，2016； 

Tardif等，2019）、古水文动力数据同化产品（Paleo Hydro
dynamics Data Assimilation Product，PHYDA）（Steiger等， 

2018）、南京师范大学过去两千年再分析资料（NNU-2ka 
Reanalysis））（Hu等，2024；Wu等，2025）。这些数据集 

中除了包含温度、降水、环流场等常规变量，还包括了 

帕默尔干旱指数（Palmer Drought Severity Index，PDSI）、 

热带辐合带（Intertropical Convergence Zone，ITCZ）、厄 

尔尼诺/南方涛动（El Niño-Southern Oscillation，ENSO）、 

太平洋年代际涛动（Pacific Decadal Oscillation，PDO）、大 

西洋多年代际涛动（Atlantic Multidecadal Oscillation， 

AMO）等指数。 

由于过去两千年的同化技术比较成熟，因此除了重 

建气候特征外，古气候数据同化还被应用于多尺度气候 

变化的机制分析（Zhu等，2022）。Erb等（2020）重建了过 

去千年美国地区的干旱及环流场，发现内部变率而非外 

强迫主导了多年干旱。Lyu等（2024）重建了过去千年的南 

美季风强度，发现在中世纪气候异常期（Medieval climate 
anomaly，MCA）到小冰期（Little Ice Age，LIA）的转换时 

段，南美季风存在百年尺度的增强，这与大西洋ITCZ的 

南移及太平洋沃克环流增强有关。Fang等（2022）基于北 

极地区的树轮、冰芯、湖泊沉积、历史文献代用指标对 

过去千年的北极放大指数进行了同化，发现AMO主导了 

其多年代际的变化，而人为温室气体主导了其在工业革 

命以来的百年尺度减弱。 

整体而言，过去两千年的温度及环流同化已相对完 

备，但因为降水相较于温度而言具有更高的空间异质性 

和局地性特征（Hancock等，2023），且降水与代用资料的 

关系、主导机制更加复杂，所以降水的同化仍存在挑战 

（Wu等，2025）。此外，由于过去两千年的代用资料丰 

富，而且PSM更成熟，因此过去两千年时段还承担着未 

来同化方法改进的任务。 

3.2 全新世  

相对过去两千年，全新世及更早时段中的古气候数 

据同化应用相对少一些，主要的同化算法为EnKF方法。 

全新世时段，Erb等（2022）基于EnKF方法，重建了时空 

连续的全新世温度变化。所使用的代用资料为涵盖湖泊 

沉积、海洋沉积、泥炭、冰芯、石笋等指标的Tempera
ture 12k数据集（Kaufman等，2020），模拟结果为基于 

HadCM3模式的末次盛冰期瞬变试验（Snoll等，2022）和 

基于CCSM3模式的TraCE-21ka试验（Liu等，2014）。结果 

显示，中全新世的温度为工业革命前最高，比过去千年 

高0.09 ℃，这个结果比之前的全新世重建结果（Marcott 
等，2013；Kaufman等，2020）要低，但比其他同化结果 

（Osman等，2021）要高。此外，Erb等（2022）还测试了季 

节性对全新世温度趋势的影响，发现即使在全部记录都 

考虑夏季误差的情况下，仍无法解释记录和模拟之间的 

偏差。 

3.3 LGM以来  

Tierney等（2020）和Osman等（2021）基于EnKF方法对 

LGM以来的温度变化进行了同化。所使用的代用资料为 

表 征 海 表 温 度 的 海 洋 地 化 指 标 数 据 集 （ δ  1 8 O 、 M g /  

Ca、U37
K 、TEX 86），模拟数据为基于iCESM模式开展的4 

个切片试验的结果。同化结果显示，LGM时段全球平均 

温度下降−6.1 ℃（95%置信区间为−6.5–−5.7 ℃），由此推 

算的气候敏感性为3.4 ℃（95%置信区间为2.4–4.5 ℃） 

（Tierney等，2020）。LGM以来温度变化的主要驱动因子 

为冰盖和温室气体导致的辐射外强迫，其次为AMOC和 

季节太阳辐射的变化（Osman等，2021）。Annan等（2022） 

基于EnKF方法，利用了PMIP的多模式结果和3套集成的 

格点海表温度和表面气温数据，重建了LGM的海表温度 

和表面气温。结果显示，LGM时段全球平均气温相对工 

业革命前的距平为−4.5±0.9 ℃，这个结果与Tierney等 

（2020）结果之间的差别主要来自于先验的选择。因此， 

他们推荐使用多模式集合来作为可靠的先验估计，但前 

提条件是模拟结果的范围要尽可能真实全面地表征不确 

定性的主要来源。 

3.4 深时数据同化  

近年来，古气候数据同化也被应用于深时气候的重 

建。例如，针对古新世-始新世极热事件（PETM，56 Ma）， 

Tierney等（2022）利用EnKF方法对PETM的气候状态进行 

了重建。所用的代用指标除了末次盛冰期再分析资料 

（Last Glacial Maximum Reanalysis，LGMR）同化所用的4 

种海洋地化指标外，还添加了陆地的代用指标MBT Me
5 ， 

所使用的模拟资料为一组基于iCESM的早始新世模拟试 

验结果。同化结果显示，PETM时段的全球平均温度变化 

为5.6 ℃（95%置信区间为5.4–5.9 ℃），由此推算的气候敏 

感性为6.5 ℃（95%置信区间为5.7–7.4 ℃）（Tierney等， 

2022）。 

Li等（2024）也基于EnKF方法对PETM期间的碳循环 

扰动进行了重建，所使用的代用指标为海底沉积CaCO 3 

和海表温度指标（δ 18O、Mg/Ca、TEX 86），所使用的模拟 

资料是cGENIE模式的100个成员集合模拟结果。同化结 
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果 显 示 ， 大 气 C O  2 从 8 9 0  p p m 增 加 到 1 9 8 0  p p m  
（1 ppm=1 μL/L），而海水pH值下降0.46，海水钙饱和度 

从10.2下降到3.8。 

上新世（5.33–2.58 Ma）是距今最近的一次CO 2浓度接 

近400 ppm的地质时段，Tierney等（2025a）利用EnKF方法 

对上新世的气候状态进行了重建，所使用的代用指标为 

海表温度指标（δ 18O、Mg/Ca、TEX 86），所使用的模拟资 

料为14个PlioMIP2试验、2个基于CESM2的上新世敏感性 

试验和21个基于CESM1的类-上新世试验结果。同化结果 

显示，中上新世增温约为4.1 ℃（95%置信区间为3.0– 
5.3 ℃），由此推算的气候敏感性为4.8 ℃（95%置信区间 

为2.6–9.9 ℃），而且赤道太平洋海温梯度呈现出类El 
Nino的模态，此外北太平洋盐度偏低而北大西洋盐度 

偏高。 

J u d d 等 （ 2 0 2 4 ） 进 一 步 利 用 E n K F 方 法 对 显 生 宙  

（485 Ma）的全球平均温度进行了重建（PhanDA），所使用 

的代用资料为表征海表温度的海洋地化指标数据集 

（δ 18O、Mg/Ca、U37
K 、TEX 86），所使用的模拟资料是基 

于iCESM的80个成员的切片模拟试验结果。同化结果显 

示，全球平均温度变化范围为11–36 ℃，由此推算的气候 

敏感性为8 ℃左右，而且显生宙全球平均温度的主要驱动 

因子是CO 2浓度。 

整体而言，过去两千年的同化方法比较成熟且多样， 

包括粒子滤波、EnKF及其改进型，以及各种最新的在线 

同化方法，而全新世及其之前更久远的时段，同化方法 

以EnKF为主。在同化的初始场方面，过去两千年和全新 

世时段的同化都是以瞬变积分模拟结果为主，而LGM及 

其之前更久远的时段，同化以切片模拟结果为主。在同 

化的代用指标方面，过去两千年的同化以树轮、珊瑚 

δ 18O、Sr/Ca等指标为主，全新世同化以石笋δ 18O、湖泊 

和海洋沉积等为主，而LGM及更久时段的同化以海洋地 

化指标为主。 

3.5 现有同化数据集与平台  

过去两千年时段的同化数据集方面，Hakim等（2016） 

结合PAGES 2ka的重建数据集和过去千年的模拟结果，制 

作了包括温度、降水、环流场数据的过去两千年的再分 

析资料LMR。Steiger等（2018）进一步重建了过去两千年 

的干湿指数及环流场PHYDA。Hu等（2024）制作了NNU- 
2ka Reanalysis。Erb等（2022）重建了全新世温度数据、 

Tierney团队重建了LGMR、PETM、上新世、显生宙的温 

度变化资料，这些资料均已开放共享。 

这些数据集中，过去两千年的同化结果除了温度、 

降水等常规变量之外，还包括不同高度的环流场，而全 

新世及更久时段的同化结果主要以温度重建为主，因此 

这些时段的环流场同化也是未来的发展方向之一，这就 

必须借助于对这些时段气候变化机理的更深入理解及模 

式模拟的改进。 

在同化平台方面，现在很多同化算法都是开源的， 

这些算法以EnKF或其改进型为主，主要的语言为Python 
或Matlab。主要的平台包括与LMR相对应的LMR（Hakim 
等，2016），改进版的LMR Turbo（LMRt）（Zhu等，2021） 

和最新的Climate field reconstruction cfr）（Zhu等，2024）， 

这些算法都是基于Python语言的。美国亚利桑那大学的 

Jessica Tierney团队也研发了与其LGMR相对应的同化软 

件包（DASH）（King等，2023），是基于Matlab软件的。南 

京 大 学 雷 荔 傈 团 队 研 发 的 E n K F 同 化 算 法 的 改 进 型  

AOEnKF和HGAOEnKF软件包（Sun等，2022，2024），也 

是基于Matlab软件的。北京大学李明松团队研发的deep
DA软件包（Li等，2024），是基于Python软件的。这些软 

件包的核心算法均是EnKF或其改进型。 

3.6 案例分析  

氧同位素δ 18O作为一种存在于多种载体的代用指标， 

广泛应用于各个时段的古气候重建。之前基于氧同位素 

的重建，多以线性回归模型为基础，而忽视了氧同位素 

与气候变量关系背后的物理机制（Liu等，2023）。现在， 

有了耦合氧同位素的模拟试验，可以更好地厘清氧同位 

素变化的物理机制，使得基于非线性PSM针对各种载体 

中的氧同位素同化成为可能（Tierney等，2020；Lyu等， 

2024）。Lyu等（2024）认为，同化过程中加入δ 18O后，相 

比LMR和PHYDA，可以更好地重建南美季风的变化。那 

么，非线性PSM与传统的线性PSM的同化技巧有什么差 

别呢? 下面我们具体对比一下针对珊瑚δ 18O基于线性PSM 
和非线性PSM进行海表温度（SST）同化的差异。 

图3A和3B分别为基于线性PSM同化结果的Nino3.4指 

数和非线性PSM同化结果的Nino3.4指数与观测的对比， 

结果显示两种方法同化的结果均与观测有较高的相关性 

（r=0.82，0.81，p<0.01），没有显著的差别。图3C和3D分 

别是以Palmyra岛记录为例的两种同化方法所用到的协方 

差空间场，其中Palmyra岛的SST和δ 18O与全球的SST相关 

空间场类似，呈现典型的ENSO模态，说明两个变量均对 

Nino3.4区域SST有很好的表征，可以用来进行Nino3.4指 

数的同化。同化结果显示，两者相差不大，主要体现在 

非线性PSM的同化结果分布更加大，其CE值为0.35，小 

于线性PSM同化结果的CE值0.55。说明两种方法在复现 

Nino3.4指数变率方面的技巧相差不大，但非线性PSM同 
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化结果的分布范围更大。 

这说明，基于耦合氧同位素模拟结果的非线性PSM 
同化效果与传统线性PSM类似，那未来将基于模拟结果 

构建的非线性PSM应用与石笋氧同位素等代用指标的同 

化中，也具有较好的前景。也可用于有孔虫同位素和树 

轮同位素等代用指标的线性PSM的矫正及同化结果验证。 

4 展望  

自2000年古气候数据同化概念提出以来，古气候数 

据同化在古气候研究中取得了重要的进展。本文系统回 

顾了古气候数据同化的发展沿革、在各个时段的应用、 

解决的关键科学问题。可以说，古气候数据同化在很大 

程度上提升了我们对历史时期不同时段气候时空特征和 

演化过程的认知，在过去两千年这些同化应用比较成熟 

的时段，同化方法还可以用来完善气候变化的成因机制。 

当前，几个国际科学计划中的古气候同化相关的研究计 

划也在紧锣密鼓地筹备中，例如CMIP7的古气候数据同 

化比较计划（Paleo-DA MIP）、PAGEs2ka的古气候再分析 

集成项目（PRISM）。 

诚然，古气候数据同化研究还非常初步，即使当前 

常用的离线EnKF方法实际上是非常简化但有效的方法， 

仍存在一些亟待解决或继续完善的方面，下面就从古气 

候数据同化可解决的关键科学问题、优缺点及改进、未 

来发展方向等方面进行展望。 

4.1 古气候数据同化可以解决的关键科学问题   

如何通过结合代用资料和模拟结果从而更好的重建 

古气候的特征及规律，是古气候数据同化关注的首要科 

学问题。除了基础的重建不同尺度的气候变化之外，古 

气候数据同化还被应用于解决一些代用资料和模拟结果、 

代用资料之间的争议。其中一个典型的例子就是全新世 

温度悖论问题。Erb等（2022）认为中全新世温度比过去千 

年高，但Osman等（2021）和Bova等（2021）的同化结果并 

未反映出明显的中全新世大暖期。Erb等（2022）还做了敏 

感性试验，发现虽然代用指标的季节偏差可能指示的是 

夏季温度的趋势，但是季节偏差的潜在影响不足以使重 

建的全球平均温度与瞬变模拟中看到的变暖趋势相一致。 

而Osman等（2021）认为，南半球稀疏的代用资料的权重 

过高可能会导致中全新世暖期，但这个只能解释部分暖 

异常，如何缓解代用资料和模拟结果间的差别还需要进 

一步的研究，特别是同化是否可以在这个方面有所贡献。 

最近，Hao等（2025）基于全球海洋沉积物代用指标对全新 

图 3 基于线性PSM（A）和非线性PSM（B）的观测时段Nino3.4指数同化结果对比，以及表征同化所用协方差矩阵的点面相关空间场（C，D），图D中， 

在计算相关系数之前，海水的δ 18O sw已转化为珊瑚δ 18O c  
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世温度进行了重建，发现中全新世温度异常有显著的空 

间差异，其中欧洲和欧亚大陆高纬度的冬季和全年平均 

温度均为偏高，而其他区域温度偏低，之前的差异源自 

模拟结果对植被和海冰的反馈偏差所造成的高纬度冷偏 

差，而代用资料因为集中在欧洲地区所导致的暖偏差。 

近期的欧亚大陆中纬度的烯酮重建（Jiang等，2024）也显 

示全新世温度趋势具有空间异质性，即中国东北地区呈 

现降温趋势，而西伯利亚西南部呈现增温趋势，这为不 

同区域代用资料的同化协方差矩阵局地化的选取提供了 

重要信息。最近的研究（Liu等，2025）发现，代用资料中 

低估了温度的季节性，导致重建的全新世温度趋势被夏 

季温度主导，而同化是否可以通过耦合模拟结果来减小 

这个不确定性从而给出更可靠的全新世温度趋势重建， 

也是一个值得进一步深入探讨的问题。 

除了用来重建气候特征之外，同化还开始被应用于 

机制研究，特别是对同化技术比较成熟的过去两千年时 

段。目前，过去两千年的同化已针对环流场进行了重建， 

而其他特征时段的同化结果还侧重温度等变量时空特征 

的重建。例如，过去千年针对不同尺度的季风降水或干 

旱变化及其驱动机制（Erb等，2020；Lyu等，2024）。因 

为过去两千年的代用指标同环流变化的PSM相对比较清 

楚，关键在于过去千年的代用指标在观测时段有数据， 

可以同观测数据构建PSM，另外过去千年的代用指标的 

气候表征意义更成熟。算法方面，粒子滤波同化的环流 

场跟温度和降水的变化更为一致，而其他方法由于环流 

场和温度降水是单独同化的，所以并不一致。但粒子滤 

波对环流场重建的可靠性，更依赖模式结果对机制的模 

拟。除了温度、降水、环流场之外，古气候数据同化还 

可以对更多的气候环境要素进行重建，例如Li等（2024） 

针对PETM时期碳循环和碳酸盐饱和状态的重建，为理解 

PETM时期的大洋酸化和海水碳酸盐饱和状态提供了帮 

助。这也为更古老的地质历史时期的气候环境重建提供 

了全新的思路。 

此外，定量区分内部变率和外强迫的贡献，作为古 

气候研究领域关注的另外一个关键科学问题，也是古气 

候数据同化对机制研究的一个方面。之前的研究多基于 

单因子敏感性试验集合的方法来进行区分，而这种方法 

存在着模式依赖性的问题，而古气候数据同化通过结合 

多个模式结果给出更可靠的对外强迫的响应，可以为回 

答这个问题起到一定作用。例如，在给定外强迫的情况 

下，早期的同化方法所得到的结果没有超出模式结果内 

部变率的范畴（Widmann等，2010）。在同化过程中，内 

部变率的来源包括多模式结果中随机抽取的初始场及代 

用数据中比信号更高频的变率（或噪声），对外强迫响应 

的来源包括了多模式模拟的响应和代用数据中的信号。 

通过定量评估两个来源的可靠性，给出更可靠的对外强 

迫响应和内部变率，从而更好地定量区分两者对气候变 

化的相对贡献。 

在服务未来气候预估方面，气候敏感性也是古气候 

数据同化经常用来研究的关键科学问题之一。气候敏感 

性的定义为，二氧化碳浓度升高2倍时地球系统的温度变 

化，其计算方式（Tierney等，2020）为  

R FECS = GMST × (7)2×CO2

其中， GMST是同化所得到的该特征时段全球平均温度 

的变化， R是该特征时段的辐射强迫，F2×CO2
二氧化碳 

浓度升高2倍所带来的辐射强迫。在计算过程中， R

和F2×CO2
由模式结果估算，同化结果提供 GMST的值。 

Tierney等（2020）基于LGMR估算的气候敏感性为3.4 ℃ 

（95%的置信区间为2.4–4.5 ℃）。Tierney等（2025a）基于上 

新世温度同化所估算的气候敏感性为4.8 ℃（90%的置信 

区间为2.6–9.9 ℃）。Judd等（2024）基于显生宙温度同化所 

估算的气候敏感性为~8 ℃。由此可见，气候敏感性的值 

随着特征时段温度的增加而升高，且置信区间的变化说 

明同化结果的分布随时段前推而逐渐增加。此外，特征 

时段的辐射强迫估算的不确定性，对气候敏感性的计算 

也有显著影响，说明了进一步提高特征时段外强迫重建 

及模式反馈精度。 

4.2 古气候数据同化的不足及改进  

近年来，科研人员针对古气候数据同化的代用资料 

系统模型、同化算法等组成部分的不足做了很多改进， 

这些改进体现在对同化初始场的选取、观测与模拟变量 

关系的构建、在线同化等方面的提高。 

之前讲到，不确定性的计算是古气候数据同化的主 

要挑战之一，代用资料和模式结果的不确定性计算都存 

在着很多难题。在计算代用资料的不确定性时，应该涵 

盖记录自身的统计不确定性、定年误差、器测误差、空 

间代表性误差以及代用资料系统模型的表示误差，如何 

定量计算这些不确定性需要深入的探讨，并与重建领域 

的专家紧密合作。在计算模拟结果的不确定性时，需要 

大量的长期气候平均值的独立样本，即在观测误差范围 

内的由不同外强迫、边界条件和模式参数的长期模拟， 

当前的计算资源很难满足这个需求。而且，当前同化多 

采用同一模式的结果，未来的同化应采用多模式模拟结 

果，来更好的量化模拟结果的误差。 

在代用资料的质量控制和误差估计方面，虽然更多 
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的代用资料可以带来更多的古气候信息，有利于得到更 

准确的古气候重建，但在将新的代用资料引入同化过程 

中时，不能简单地进行叠加，而是需要进行一定的质量 

控制，然后量化其不确定性，然后客观判断其在同化过 

程中所占的权重。 

在同化过程中，针对不同时段、不同尺度、不同变 

量的同化，不同区域代用资料的贡献（Wu等，2025）需要 

首先进行量化。然后，定年误差方面，在过去两千年时 

段，借助树轮定年准确的优势，可以借助树轮定年对年 

或更高分辨率的代用资料（如珊瑚等）来进行部分矫正（Hu 
等，2024）。而在更长尺度上，当没有精准定年的代用资 

料进行矫正的情况下，如何将定年误差量化至同化过程 

中，需要与重建领域专家的经验充分结合起来。此外， 

除了已经应用比较成熟的代用资料，还有其他一些不常 

用记录特别是定性类的资料（如历史文献等）如何应用到 

同化中，也需要思考。从而在不同种类的代用资料误差 

的计算方法中，考虑每种资料的分辨率、定年精度等特 

征，实行多种资料的融合。 

在代用资料系统模型的构建与完善方面，当前树 

轮、珊瑚氧同位素和海洋有孔虫、U37
K 等的代用资料系 

统模型已比较成熟，但石笋氧同位素、孢粉等的代用资 

料系统模型需要进一步构建及完善（Ning等，2025a）， 

特别是跟降水之间的PSM目前还处于初步阶段。在此过 

程中，借助氧同位素模拟结果，石笋氧同位素等同位素 

相 关 的 代 用 资 料 系 统 模 型 可 以 构 建 出 来 （ N i n g 等 ，  

2025b）。但由此构建出来的非线性算子跟传统线性算子 

的差别，需要系统地进行对比其优缺点。除此之外，机 

器学习等方法也已被应用在非线性PSM的构建，未来可 

以进一步完善（Fang和Li，2019；Wei等，2024）。Fang 
和Li（2019）基于人工神经网络的方法构建了树轮宽度的 

非线性PSM，发现其同化效果比线性回归和VS-Lite模型 

更好，也证实了机器学习方法在未来其他变量同化当中 

应用的可行性。 

在同化结果的验证方面，如果同化的时段涵盖了器 

测时段，那可以用观测数据进行验证，具体可使用相关 

系数、均方根误差、功效系数等指标来进行验证（张昊勋 

等，2025）。但对更长时段的同化结果，由于观测数据的 

缺失，通常采用随机保留25%的代用资料来进行独立验 

证（Hakim等，2016；Tierney等，2020；Osman等，2021； 

Wu等，2025）。但这种验证方法将代用资料的不确定性 

包括在了其中，会对同化结果验证的客观性有一定影响。 

最近的研究也尝试使用独立的观测数据如钻孔温度进行 

验证（Meng等，2025）。 因此，未来需要探索更加客观的 

同化结果验证方法。 

4.3 古气候数据同化的未来发展方向  

在上述改进的基础上，古气候数据同化还可以在古 

气候在线同化、古气候动力学约束、深度学习和大数据 

的应用等几个方面进一步发展。 

4.3.1 古气候在线数据同化  

在同化算法的未来发展方面，除了针对传统的离线 

同化算法的改进（Sun等，2022，2024）之外，当前也开始 

了在线同化（Perkins和Hakim，2020；Meng和Hakim， 

2024；Sun等，2025）。当然，古气候在线数据同化与现 

代气候中的在线积分同化有所不同，主要区别在于其当 

前时刻的初始场是由前面12个月的状态向量通过机器学 

习方法所生成的（Meng和Hakim，2024）。相对于普通的 

离线同化和基于LIM模型的在线同化方法，基于机器学 

习的在线同化方法在过去两千年时段表现出了更高的准 

确 性 ， 特 别 是 在 代 用 资 料 更 稀 疏 的 情 况 下 （ S u n 等 ，  

2025）。目前的在线同化多集中在月尺度分辨率的过去两 

千年数据同化，是否继续提高分辨率及应用于更长时段 

的同化，如何提高在线同化的计算效率并充分发挥在线 

同化在初始场构建方面的优势，是一个关键方面。并且， 

基于深度学习的在线同化算法仍存在信号衰减的缺点， 

需要应用膨胀方法增加初始集合扰动以增大初始集合离 

散度（Meng和Hakim，2024；Sun等，2025）。 

4.3.2 古气候动力学在古气候数据同化中的应用  

作为同化过程中的主要动力约束，古气候动力机制 

的完善和应用在同化方法的发展中也起到重要的作用。 

首先是在进一步明晰代用指标的气候指示意义方面。当 

前，部分代用指标的气候指示意义多由相关系数来判断， 

但其背后的物理过程并不清楚。例如，通常认为南美安 

第斯山的冰芯δ 18O可以表征ENSO，但这种相关实际反映 

了轨道尺度赤道东太平洋海温异常对对流层中层水汽 

δ 18O的影响（Liu等，2023）。此外，东亚地区的石笋δ 18O 
变化对局地降水量、水源地转换、上游衰减效应的表征， 

也可以通过耦合氧同位素的模拟结果来定量区分（Ning 
等，2025b），从而得到更精准的代用资料系统模型。在 

借助模式来判断代用指标的气候指示意义之后，可以帮 

助定量划分同一代用资料对不同气候变量的表征，可以 

拓展同化在不同局地变量方面的应用，也可以通过遥相 

关关系对大尺度的海温或环流场进行同化。此外，在将 

不同类型代用资料在同化中的融合，也可以考虑不同代 

用指标对气候变量的定量表征。 

然而，需要注意的是，在应用动力约束的时候，不 
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应该简单地套用模拟结果的协方差矩阵。因为模式本身 

存在着误差，例如（Sanchez等，2021）等发现模式常见的 

双ITCZ误差，对SPCZ区域的珊瑚同化ENSO的结果有显 

著影响，需要在同化前进行误差订正。类似的，模式在 

遥相关方面的模拟误差也会影响同化结果。此外，大尺 

度环流场的遥相关影响在不同特征时段的强弱有所不同 

（Ning等，2025a），因此在同化的时候，动力约束也需要 

随时间变化。当前，除了过去两千年（Hakim等，2016； 

Wu等，2025）和全新世（Erb等，2022）时段采用瞬变模拟 

结果，更长时段的同化（Tierney等，2020；Li等，2024） 

多采用切片模拟，未来研究中更长时段的瞬变模拟结果 

（如iTraCE结果等）可以使得同化初始场的选取更加符合 

外强迫对气候系统的影响。因此，瞬变模拟结果的应用 

有可能会提高长时段同化结果，但需要进一步对比验证。 

此外，古气候数据同化结果中的动力约束，可以为 

重建的优化选点提供帮助。Huntley和Hakim（2010）通过 

一组敏感性试验发现，当观测比较稀疏的时候，站点的 

位置比站点的数量对同化结果的精度更加重要，即代用 

资料采集之前的选点可参考同化结果来进行优化选择。 

Wu等（2025）也发现，在代用资料数量接近时，记录的位 

置对同化结果的影响更大。近期的同化算法的改进，也 

侧重强调在稀疏代用资料情况下同化效果的提升（Sun等， 

2025）。因此，可以通过设计敏感性试验的方法，定量评 

估代用资料的站点信息对气候重建的贡献。可以说，古 

气候数据同化相比直接的模拟结果，因为其涵盖了代用 

资料的气候指示意义等信息，可以更好地依据代用资料 

的类型和属性为其采集选点提供理论指导（方苗和李新， 

2016）。不过，这些结论大多是在过去两千年时段的同化 

结果中得到的，更长时段的类似敏感性分析，目前还有 

待开展。 

4.3.3 机器学习和大数据在古气候数据同化中的应用  

机器学习和大数据在地球科学领域已有了广泛的应 

用，为很多复杂的地学问题提供了新的研究思路。在古 

气候数据同化研究中，深度学习方法首先应用在代用资 

料系统模型的构建方面，其优势在于不需要对代用指标 

和气候变量间的物理机制有清晰的认知（Fang和Li， 

2019）。然而，其构建需要大量的数据来训练，因此目前 

主要还是集中在树轮（Fang和Li，2019）和珊瑚（Wei等， 

2024）这些在观测时段有足够数据的代用指标方面，而针 

对其他在观测时段只有少量时间节点的代用指标，基于 

深度学习构建代用资料系统模型还比较困难。当然，这 

种对物理机制的模糊认知也可能会对同化结果带来潜在 

的缺陷，而且，深度学习构建的代用资料系统模型同线 

性代用资料系统模型类似，也存在过拟合的潜在风险 

（Fang等，2022）。此外，代用资料质量对模型构建的影 

响，也需要进行评估。 

除了深度学习之外，其他机器学习方法也在古气候 

数据同化中具有重要的应用潜力。例如，因果推断方法 

（苏建宾等，2023）可以用于厘清代用指标与气候变量之 

间真实的因果关系，突破目前常用的线性相关关系，从 

而提高重建过程的可靠性和可解释性。迁移学习方法在 

构建代用资料系统模型方面具有很大的优势，可以突破 

训练数据稀缺、计算成本高等制约，但仍存在过拟合的 

风险。在将具有气候指示意义存在争议的代用资料进行 

同化之前，可以先使用因果发现算法来判断是某一种气 

候变量直接导致了代用指标的变化，还是多种指标存在 

混杂因素，这将有助于筛选出最可靠的代用指标进行同 

化。而物理信息神经网络方法可以利用已知的物理规律 

来指导神经网络的训练，使其在代用资料稀缺的区域也 

能构建出符合物理规律的代用资料系统模型。 

数据驱动的气候模型的构建也是机器学习在同化领 

域的主要用途之一。例如，Meng和Hakim（2024）将深度 

学习引入古气候数据同化中，构建了一个在线同化系统， 

发现其在热带上层海温重建方面，比传统的LIM模型更 

加准确。Sun等（2025）进一步基于深度学习网络和集成混 

合集合卡尔曼滤波构建了过去两千年的在线同化，结果 

显示这种方法通过膨胀观测误差等手段，比常规的基于 

LIM模型的在线同化和离线同化的结果精度更高，特别 

是在早期代用资料比较稀疏的情况下。 

此外，机器学习还被应用在模式误差估计方面，彭 

子怡等（2024）构建了基于卷积神经网络的模式误差估计 

方法，用来计算模式参数不准确所导致的模式误差及初 

始条件误差。在应用在简单模式的同化过程中，发现该 

方法可以很好地订正模式误差，因此可以考虑未来应用 

在古气候数据同化中。  
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