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Abstract Reconstructing paleoclimate characteristics and understanding their evolution rules is a key question in Earth system science and global change
research. It helps clarify the historical position of the modern warming period, understand the features and mechanisms of climate change under warming
backgrounds, and thereby improve the accuracy of future climate projections. Proxy records and numerical modeling are two primary approaches in current
paleoclimate study. As an emerging methodology, paleoclimate data assimilation effectively integrates paleoclimate proxy records with numerical simula-
tions, combining their advantages to enhance the accuracy of paleoclimate reconstructions. This paper systematically reviews recent progresses in paleo-
climate data assimilation. It first outlines the historical developments of major paleoclimate data assimilation methods, discusses their advantages,
disadvantages, and applicability, and highlights recent improvements such as the application of machine learning methods and the developments of online
assimilation. Then, it introduces applications of paleoclimate data assimilation according to different typical paleoclimate periods, particularly addressing
challenges associated with various types of proxy data, and summarizes currently available open-source datasets and algorithm platforms. A specific case
study is presented to illustrate the application of assimilating oxygen isotope simulations. Finally, the paper discusses unresolved issues and challenges in

paleoclimate data assimilation studies, and outlines potential directions for future research.
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1. Introduction

Paleoclimate research contributes to understanding climate
change mechanisms, identifying key climatic factors influencing
the environment, and evaluating contemporary climate numer-
ical models. This, in turn, helps improve predictions of future
climate and environmental changes and supports sustainable
developments (Wang, 2022). Paleoclimate proxy records and
model simulations are two primary research methods in
paleoclimate studies. Each of them has its own advantages:
paleoclimate proxy records represent the historical evidence of
paleoclimate, while model simulations incorporate dynamic
mechanisms.

Paleoclimate proxy records refer to various biological, physical,
and chemical indicators used to reconstruct paleoclimates. For
the last two millennia, proxy datasets include the PAGES2k
dataset (Past Global Changes 2k) (PAGES2k Consortium, 2017)
and the Mann09 dataset (Mann et al., 2009). Holocene proxy
datasets include Temperature 12ka (Kaufman et al., 2020), the
Arctic Holocene Proxy Climate Database (Sundqvist et al., 2014),
and the LegacyClimate 1.0 dataset (Herzschuh et al., 2023), etc.
In addition, there are various integrated datasets dedicated to
specific proxy types, such as the CoralHydro2k dataset for coral
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records (Walter et al., 2023) and the SASIL dataset for stalagmite
records (Comas-Bru et al., 2020). These datasets have signifi-
cantly contributed to the paleoclimate reconstruction across
different typical periods.

For paleoclimate modeling, the Paleoclimate Modelling Inter-
comparison Project (PMIP) has long been dedicated to under-
standing past climate states and their responses to external
forcings through model simulations. Currently, the latest PMIP4
results have been released, which include transient simulations
of the past millennium (past1000), as well as equilibrium
simulations for the Mid-Holocene (MH), the Last Glacial
Maximum (LGM), the Last Interglacial (LIG), the mid-Pliocene,
and the Early Eocene (EECO), the Paleocene-Eocene Thermal
Maximum (PETM), and the pre-PETM (Kageyama et al., 2018).
Continuous transient simulations include multi-member ensem-
ble simulations for the past millennium, such as the Community
Earth System Model-Last Millennium Ensemble (CESM-LME)
(Otto-Bliesner et al., 2016), and the Nanjing Normal University
Last Two Millennium Simulation (NNU-2ka) (Wang et al.,
2016). For the Holocene, continuous transient simulations
include the Nanjing Normal University Holocene Simulation
(NNU-Holocene) (Wan et al., 2020), the HT-11.5ka experiment
by the Institute of Atmospheric Physics, Chinese Academy of
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Sciences (Tian et al., 2020), the experiment based on MPI-ESM
by the Max Planck Institute for Meteorology in Germany (Bader
et al., 2020), the experiment based on HadCM3 by the Hadley
Centre in the UK (Hopcroft and Valdes, 2021, 2022), and the
experiment based on EC-Earth by Stockholm University in
Sweden (Zhang et al., 2021). Continuous transient simulations
since the LGM include the Simulation of the Transient Climate of
the Last 21,000 Years (TraCE-21ka) (Liu et al., 2009) and the
latest Isotope-enabled Simulation of the Transient Climate of the
Last 21,000 Years (iTraCE-21ka) (He et al., 2021). Additionally,
there are accelerated transient simulations covering the past
300,000 years (Xie et al., 2019; Yan et al., 2023). These
simulations contribute to understanding the mechanisms of
paleoclimate changes across different typical periods.

However, each of these two approaches has its own drawbacks.
For instance, paleoclimate proxy records are often point-based,
with spatiotemporal discontinuities and uneven distributions.
They are subject to dating errors, and the climatic indications of
some proxies are ambiguous or controversial (Chen et al., 2023).
Moreover, proxies primarily reflect surface variables such as
temperature or precipitation. Additionally, paleoclimate proxy
records involve two types of errors, i.e., instrumental errors
arising from human factors or uncertainties in measurement and
analytical instruments during sampling and analysis, and spatial
representativeness errors due to mismatches between the spatial
scale represented by the proxy records and that of climate model
grids (Li, 2013).

On the other hand, model simulations often reflect the internal
variability of the models themselves, which may not accurately
capture the phases of true internal variability in paleoclimates.
They also exhibit uncertainties in the magnitudes of responses to
external forcings. Furthermore, although paleoclimate modeling
aims to better represent external forcings and feedbacks, current
state-of-the-art models are primarily developed and calibrated for
future climate predictions and projections rather than being
specifically designed or optimized for paleoclimate studies
(Kageyama et al., 2018), which may introduce biases in
simulation accuracy.

Therefore, integrating the advantages of both approaches and
compensating for their respective drawbacks are essential in
paleoclimate research to derive more accurate paleoclimate
characteristics and rules. This is the original motivation of
paleoclimate data assimilation (von Storch et al., 2000).
Paleoclimate data assimilation provides a mathematical frame-
work to extract useful information from proxy records and
simulations. Proxy records offer evidence of climate changes,
while simulations provide a physically constrained framework
based on dynamical equations. By quantitatively estimating
errors in both proxy records and simulations, this approach
constrains paleoclimate model runs (or directly adjusts simula-
tion results), yielding more accurate and spatiotemporally
continuous paleoclimate reconstructions (Hakim et al., 2013).

Thus, paleoclimate data assimilation shares a common
objective with modern climate data assimilation, i.e., utilizing
spatially discontinuous observations to generate spatially reg-
ularized reanalysis data, especially for variables not directly
observed. However, paleoclimate data assimilation faces unique
challenges, primarily because it deals with proxy records whose
physical meanings are often unclear. This introduces complex-
ities in assimilation steps, such as the design of observational
operators and error quantification. For example, stalagmite &' 0

is a proxy for monsoon intensity, but its specific climatic
interpretation (e.g., circulation strength, moisture source varia-
tions) remains debated. To reconstruct monsoon precipitation
using such proxy, it is necessary to develop nonlinear proxy
system models (PSMs) with the aid of isotope-enabled simula-
tions, posing challenges distinct from modern data assimilation.

Due to its unique advantages, many controversies between
proxy records and simulations, such as the Holocene tempera-
ture conundrum (Liu et al., 2014), can also be addressed through
paleoclimate data assimilation. By providing continuous spatial
fields, assimilation enables more precise depictions of the spatial
distribution of global and regional climate changes, thereby
enhancing the understanding on responses of both global and
regional climate to different forcings. Furthermore, assimilation
can contribute to key paleoclimate scientific questions, such as
climate sensitivity, by delivering more accurate results that offer
more reliable references for future projections. Consequently, it
facilitates a deeper understanding of the historical position and
impacts of the modern warming period, promoting the integra-
tion of paleo- and modern climate and environment research
(Wang, 2022).

Previous studies have provided detailed reviews of the
principles, methods, and applications of paleoclimate data
assimilation (e.g., Fang and Li, 2016; Zhang et al.,, 2025;
Tierney et al., 2025b). In recent years, significant advancements
have been made in assimilation algorithms and “online”
assimilation techniques (Sun et al., 2022; Meng and Hakim,
2024). Notably, the inclusion of oxygen isotope simulations has
improved nonlinear proxy system models (PSMs) and online
assimilation, attracting widespread attention in the paleoclimate
community. Therefore, this paper will briefly review the
historical developments of the principles, methods, and applica-
tions of paleoclimate data assimilation, with a focus on recent
innovations and techniques (e.g., online assimilation strategies).
It will then discuss the theoretical, technical, and data-related
challenges currently faced by paleoclimate data assimilation
studies. Finally, the paper will also explore the potential
applications of paleoclimate data assimilation to key scientific
questions and outline future research directions for priority
investigation.

2. Paleoclimate data assimilation methods and
evolutions

In simple terms, the fundamental concept of paleoclimate data
assimilation is to use proxy records to constrain model
simulations, combining the results from previous time steps to
produce an optimal estimate of the current climate state. Its core
principle is based on traditional Bayesian theory:

P(x | y) o< Py | x)-P(x) (1)

where x represents the reconstructed climate variables, y
represents the proxy records, P(x) stands for the prior probability
provided by the model simulations, P(y | x) is the likelihood
function, indicating the probability of proxy data given the
climate state, and P(x | y) refers to the posterior probability of the
climate variables obtained after assimilation, i.e., the assimilated
results. As shown in the formula, the final assimilated results
depend on both the prior distribution and the likelihood. Efforts in
paleoclimate data assimilation thus focus on estimating these
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two components and solving for the posterior distributions.
Therefore, paleoclimate data assimilation primarily consists of
four components, i.e., paleoclimate model simulations, proxy
records, PSMs, and assimilation algorithms.

The specific process (as illustrated in Fig. 1) is as follows: for a
given time step and specific variables in paleoclimate data
assimilation, paleoclimate simulations are first used to generate
the required data, serving as the prior estimate. Then, the prior
estimate is transformed into the proxy data space through PSMs.
The difference between the actual proxy record value and the
proxy record value estimated via the PSMs at that time step is
calculated, referred as the “innovation” in paleoclimate data
assimilation. Finally, the weight of the innovation is calculated
based on the model covariance and proxy record error, and is
applied to update the prior estimate, thereby obtaining the
posterior estimate (Talagrand, 1997). This process will be
repeated for next time step, ultimately producing assimilated
results that incorporate both historical climate evidence and
physical mechanisms.

In practical paleoclimate data assimilation studies, the primary
distinctions lie in the estimation and optimization of prior
information. Based on their chronological development, the
mainstream paleoclimate data assimilation algorithms currently
include nudging, particle filter, offline ensemble Kalman filter,
and recent online assimilation methods (Fig. 2). Brief introduc-
tions to the principles and applications of these methods are as
follows.

2.1 Nudging

The nudging method is a data assimilation technique that adds a
forcing term into the forecast model, and gradually drives the
model state towards the observations (Hoke and Anthes, 1976).
The formula is as follows:

t//n =f(wn*1) + aHT(dn*l_H(y/nfl)) +§n (2)

where y" represents the model state at time ¢, which is a function
f of the state z//"’l at time ¢, _;; o is the nudging parameter; H is
the operator that transforms the model state into the observation
space; d" is the observational data at time ¢ ; and &" is random
noise.

The primary advantage of the nudging method is its simplicity,
straightforwardness, and ease of implementation, while also
offering strong constraint effects. However, its drawbacks are
equally evident, since nudging can only assimilate variables
directly output by the model, requiring the transformation of
observational data into model-output variables during assimila-
tion. Moreover, as the formula indicates, the parameter «
determines the strength of the nudging effect. Too strong
nudging may induce erroneous dynamics due to excessively
rapid convergence, while too weak nudging may fail to effectively
constrain the results with observations (Dubinkina and Goosse,
2013). Additionally, the selection of ¢ is typically based on
empirical approaches, lacking a solid physical foundation.

In terms of application, the nudging method was the earliest
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Fig. 2 Evolution of paleoclimate data assimilation methods.
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approach used in paleoclimate data assimilation. von Storch et
al. (2000) employed nudging to reconstruct the North Atlantic
Oscillation (NAO) index during historical periods, and found that
the assimilated results better reproduced the true variations of
historical climate compared to model simulations. When
comparing three assimilation methods, including nudging, for
reconstructing Northern European climate over the past
millennium, Widmann et al. (2010) concluded that nudging
could effectively reconstruct climate changes over the past
millennium but struggled to capture target modes of variability
that differed from the model’s internal variability. Dubinkina and
Goosse (2013) compared the performance of three methods, i.e.,
nudging, particle filter, and particle filter integrated with
nudging, in reconstructing high-latitude Southern Hemisphere
climate over the past 150 years. They found that pure nudging
underperformed the other two methods in assimilating variables
with no direct observations (such as sea surface salinity, SSS), as
it failed to reflect oceanic dynamical processes. Since then, there
are relatively limited applications of nudging in paleoclimate data
assimilation research.

2.2 Particle filter

The basic idea of a particle filter is to approximate the posterior
probability distribution of the state by weighting a set of random
model sample particles based on Bayesian likelihood estimation.
The formula for calculating the posterior probability distribution
(Dubinkina and Goosse, 2013) is as follows:

M
ply"|d") = ; w,-”fi(w" - w,.”) (3)

where ¢ is the kernel density, and /" is the weight of each
particle, calculated using the following formula:

o' = Kilp(d" | z//i") (4)

where K is the normalization coefficient, and p(d" | z//i”)

represents the likelihood of the observations given the model
state.

The advantage of a particle filter is that it does not require the
prior distribution to be Gaussian (Dubinkina and Goosse, 2013),
nor does it assume a linear relationship between observations
and prior estimates. Its drawbacks include high requirements on
the quantity and quality of observational data, as well as a
tendency for weights to concentrate on a small number of
particles.

In the early applications of particle filter, simplified versions
were often employed, where only the simulation closest to the
observations was selected as the optimal particle to serve as the
initial condition for the next assimilation step (Goosse et al.,
2006; Widmann et al., 2010). For instance, Goosse et al. (2006)
applied a simplified particle filter method to simulate Northern
Hemisphere climate over the past millennium. Using only a small
number of particles (30 particles) and simple weight calculations,
they were able to generate climate states consistent with the
records. In subsequent studies, the particle filter was compared
with nudging, such as in the two aforementioned stduies
(Widmann et al., 2010; Dubinkina and Goosse, 2013). Regard-
ing the performance of particle filter alone, Widmann et al.
(2010) applied a simplified particle filter to assimilate tempera-

ture data in Northern Europe, successfully reproducing multi-
decadal temperature variability despite using only 11 particles
(simulation results). This suggests that the common issue of
particle degeneracy did not arise. Similarly, Dubinkina and
Goosse (2013) found that particle filter effectively reconstructed
variables without direct observations, such as SSS, particularly
when combined with nudging. In terms of improving particle
filter, Dubinkina et al. (2011) and Annan and Hargreaves (2012)
incorporated residual resampling methods into the algorithm.
Their results demonstrated that the standard particle filter with
residual resampling significantly outperformed simplified particle
filter in terms of assimilation accuracy.

Besides the algorithm improvements, beyond the reconstruc-
tion of temperature and circulation fields, particle filter has been
applied in recent years to precipitation reconstruction in broader
regions such as East Africa, East Asia, and South America (Klein
and Goosse, 2018; Shi et al., 2019; Lyu et al., 2024), achieving
favorable results. Notably, a recent study (Lyu et al., 2024)
applied particle filter to reconstruct South American monsoon
precipitation and circulation fields, using over 600 particles. It
was found that particle filter effectively captures the nonlinear
dynamic relationship between &' %0 and precipitation, leading to
better assimilated results.

2.3 Offline ensemble Kalman filter

The offline ensemble Kalman filter (EnKF) has been widely used
in the field of paleoclimate data assimilation in recent years
(Hakim et al., 2016; Tardif et al., 2019; Tierney et al., 2020; Li et
al., 2024; Wu et al., 2025). The core idea of EnKF is to update the
expected value at each time step using paleoclimate proxy
records, while assigning weights by comparing the error of the
proxy records with the observational error covariance. The
ensemble concept is reflected in the estimation of the background
error covariance matrix based on statistical characteristics. The
specific formula is as follows:

x* = x" + K[y - Hx")] (5)

where x? is the assimilated result; x° is the prior estimate,
typically sampled from a static source or obtained through
conditional sampling, such as existing climate model simula-
tions; y is the proxy records; H is the PSM that transforms the
prior estimate into the proxy space; ny(xb) characterizes the
difference between the observed data and the prior estimate; and
K is the Kalman gain matrix. K is used to assign weight to
y—H(x?) and transform it into the state (x°) space. The
calculation formula is as follows:

K = BH'[HBH' + R] ' (6)

where B is the covariance matrix of the prior estimate, R is the
error covariance matrix of the observations, and H is a linear
PSM.

The main advantages of the offline EnKF method are the high
accuracy under the given assumptions, a relatively straightfor-
ward solution process, ease of parallel computation, and
convenient system implementation. These features have con-
tributed to its widespread application in the field of paleoclimate
data assimilation in recent years. Its primary drawbacks include
the assumptions that the errors in prior estimates and observa-
tions follow Gaussian distributions, and that the relationships
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between observations and model results are linear.

In terms of applications, early studies conducted a series of
idealized experiments on the applications of the EnKF in
paleoclimate data assimilation. For example, Huntley and Hakim
(2010) tested the sensitivity of the EnKF to the distribution of
observation sites and found that when the number of sites is
limited, assimilated results based on a small number of well-
distributed sites are comparable to the results based on a large
number of randomly distributed sites. Pendergrass et al. (2012)
demonstrated that assimilation skill significantly improves
compared to statistically based reconstructions under two
conditions, i.e., when the model’s forecast skill exceeds the
temporal resolution of the proxy records, and when climate
covariance is strongly correlated with the mean state. Steiger et
al. (2014) applied the EnKF to temperature reconstruction over
the past millennium, compared it with traditional principal
component analysis (PCA) methods, and found that the EnKF
results are more reliable in terms of spatial features, particularly
in regions with sparse proxy data. Subsequently, Hakim et al.
(2016) and Tardif et al. (2019) further applied the EnKF method
to produce the Last Millennium Reanalysis (LMR). In recent
years, newly developed reanalysis datasets for the last two
millennia (Hu et al.,, 2024; Wu et al.,, 2025), Holocene
temperature reconstructions (Erb et al., 2022), and Last Glacial
Maximum Reanalysis (LGMR, Tierney et al., 2020; Osman et al.,
2021) have all been based on the EnKF method.

2.4 Online data assimilation

Since offline assimilation methods construct prior distributions
based solely on a static source, such as existing climate
simulations, they lack memory of previous climate states.
Therefore, many researchers have begun exploring online
assimilation methods to address this limitation (Perkins and
Hakim, 2017, 2020). For example, Perkins and Hakim (2017,
2020) used a linear inverse model (LIM) in the assimilation of
annual temperature and circulation fields to perform online
predictions of the posterior, generating prior distributions for the
next assimilation step. Their findings indicate that online
assimilation methods outperform offline ones, with improve-
ments largely attributed to the dynamical constraints of the
coupled ocean-atmosphere system. Compared to earlier online
assimilation methods that often relied on LIM, Meng and Hakim
(2024) developed an online EnKF assimilation system based on a
deep learning model, and further reconstructed monthly tropical
Pacific sea surface temperature (SST), meridional and zonal wind
stress, and upper-ocean temperatures across seven layers. They
found that because deep learning models can capture more
nonlinear relationships between current and future climate
states and retain greater prediction capacity, they yield more
accurate forecasts than traditional LIM. Moreover, these
improvements vary by region and variable, primarily manifesting
in extratropical zonal wind stress and SST, equatorial ocean
temperatures, and the thermocline in the central Pacific. In terms
of precipitation assimilation, due to the lower memory precipita-
tion, the skill of online precipitation assimilation remains below
that of temperature and circulation fields (Perkins and Hakim,
2020), similar to offline assimilation.

Due to the longer memory of the ocean, online assimilation can
transfer oceanic memory to the atmosphere, thereby improving
atmospheric assimilation, especially for the past millennium,
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where proxy records are predominantly derived from terrestrial
indicators (Perkins and Hakim, 2020; Meng and Hakim, 2024;
Meng et al., 2025). However, for longer time scales, several
questions remain to be explored, e.g., to what extent can oceanic
memory enhance the prediction skill of online assimilation, how
reliable is it for predictions of decadal and longer scale variability,
what role can deep-sea proxies like foraminifera play in
improving long-scale prediction skill, and to what degree does
prediction skill depend on the model used? Furthermore, current
online assimilation efforts have largely focused on the last two
millennia, as longer time periods require substantially greater
computational resources, making simple climate models more
feasible for such applications. Nevertheless, with advances in
computational power in the future, Earth system models may also
become viable for online assimilation over longer time periods.

3. Applications of paleoclimate data assimilations

In recent years, the applications of paleoclimate data assimilation
in reconstructing climates in different typical periods have
yielded numerous significant results. Previous studies have
provided detailed summaries of these applications (Zhang et al.,
2025). Here, a brief review is offered from the perspective of
technical details.

3.1 Last two millennia

The last two millennia are the most mature period for the
application of paleoclimate data assimilation. Since the introduc-
tion and subsequent methodological advancements, paleoclimate
data assimilation has largely focused on climate reconstruction
for this period (e.g., von Storch et al., 2000; Goosse et al., 2010).
In recent years, significant progresses have been made in data
assimilation for this period, driven by improvements in both
proxy records and model simulations (Zhu et al., 2023).
Commonly used proxy datasets include the PAGES2k and
MannQ9 datasets, as well as newer datasets such as CoralHy-
dro2k. Widely utilized simulations include the PMIP past1000
simulations and the CESM-LME simulations. In terms of
assimilation methods, early techniques such as nudging, particle
filter, and EnKF have all been applied, with particle filter and
EnKF being more prevalent in recent years. Furthermore,
substantial methodological advancements have been achieved,
such as the development of the Analogue Offline Ensemble
Kalman Filter (AOEnKF) and Hybrid Gain Analogue Offline
Ensemble Kalman Filter (HGAOEnKF) by Sun et al. (2022,
2024). These methods enhance assimilation skills by refining the
sampling of prior distributions. Additionally, recent online
assimilation approaches (Meng and Hakim, 2024; Meng et al.,
2025; Sun et al., 2025) have further contributed to these
advancements.

Currently, the major assimilated datasets include the Last
Millennium Reanalysis (LMR) (Hakim et al., 2016; Tardif et al.,
2019), the Paleo Hydrodynamics Data Assimilation Product
(PHYDA) (Steiger et al., 2018), and the Nanjing Normal
University Last Two Millennia Reanalysis (NNU-2ka Reanalysis)
(Hu et al., 2024; Wu et al., 2025). In addition to conventional
variables such as temperature, precipitation, and circulation
fields, these datasets also include indices like the Palmer Drought
Severity Index (PDSI), the Intertropical Convergence Zone (ITCZ),
El Nifio-Southern Oscillation (ENSO), the Pacific Decadal Oscilla-



tion (PDO), and the Atlantic Multidecadal Oscillation (AMO).

Because of the maturity of assimilation techniques for the last
two millennia, paleoclimate data assimilation has been applied
not only for reconstructing climate characteristics but also for
analyzing the mechanisms of multi-scale climate variability (Zhu
et al., 2022). For instance, Erb et al. (2020) reconstructed
drought and circulation fields in the United States over the past
millennium and revealed that internal variability, rather than
external forcings, dominated multi-year droughts. Lyu et al.
(2024) reconstructed South American monsoon intensity over
the past millennium and found a centennial-scale strengthening
during the transition from the Medieval Climate Anomaly (MCA)
to the Little Ice Age (LIA), which was linked to a southward shift
of the Atlantic Intertropical Convergence Zone (ITCZ) and an
intensification of the Pacific Walker Circulation. Additionally,
Fang et al. (2022) assimilated proxy records from tree rings, ice
cores, lake sediments, and historical documents in the Arctic to
reconstruct the Arctic amplification index over the past
millennium, and indicated that the AMO dominated its multi-
decadal variations, while anthropogenic greenhouse gases drove
its centennial-scale weakening since the Industrial Revolution.

Overall, assimilation of temperature and circulation fields over
the last two millennia has reached a relatively mature stage.
However, challenges remain in precipitation assimilation, as
precipitation exhibits greater spatial heterogeneity and local
variability compared to temperature (Hancock et al., 2023).
Furthermore, the relationships between precipitation and proxy
records, as well as the underlying mechanisms, are more complex
(Wu et al., 2025). Additionally, due to the abundance of proxy
records and more developed PSMs, the last two millennia also
serve as a testing ground for future advancements of assimilation
methods.

3.2 Holocene

Compared to the last two millennia, the applications of
paleoclimate data assimilation in the Holocene and earlier
periods is relatively limited, with the EnKF method being the
primary assimilation algorithm used. For the Holocene period,
Erb et al. (2022) employed the EnKF method to reconstruct
spatially and temporally continuous temperature variations. The
proxy records used were from the Temperature 12k dataset
(Kaufman et al., 2020), which includes indicators from lake
sediments, marine sediments, peat, ice cores, and stalagmites.
The simulations were derived from the LGM transient experiment
using the HadCM3 model (Snoll et al., 2022) and the TraCE-21ka
experiment based on the CCSM3 model (Liu et al., 2014). The
findings indicate that the Mid-Holocene temperature was the
highest in the pre-industrial era, approximately 0.09 °C higher
than that of the past millennium. This result is lower than
previous Holocene reconstructions (Marcott et al., 2013; Kauf-
man et al.,, 2020) but higher than other assimilated results
(Osman et al., 2021). Additionally, Erb et al. (2022) also
investigated the influence of seasonality on Holocene tempera-
ture trends and found that even when accounting for summer
biases across all records, the discrepancies between proxy records
and simulations could not be fully explained.

3.3 Since the LGM
Tierney et al. (2020) and Osman et al. (2021) applied the EnKF

method to reconstruct temperature changes since the LGM. The
proxy records they used consisted of marine geochemical
indicators representing SST, including 5'%0, Mg/Ca, U§; TEXg6.
The simulations were four snapshot experiments conducted
using the iCESM. The assimilated results show that the global
mean temperature during the LGM decreased by —6.1 °C (with a
95% confidence interval of —6.5 to —5.7 °C), corresponding to
an estimated climate sensitivity of 3.4 °C (with a 95% confidence
interval of 2.4-4.5 °C) (Tierney et al., 2020). The primary drivers
of temperature changes since the LGM were radiative forcings
induced by ice sheets and greenhouse gases, followed by
variations in the Atlantic Meridional Overturning Circulation
(AMOC) and seasonal solar radiation (Osman et al., 2021).
Annan et al. (2022) also employed the EnKF method, utilizing
multi-model results from PMIP and three sets of gridded SST and
surface air temperature datasets to reconstruct LGM sea surface
and surface air temperatures. Their results indicate that the
global mean temperature anomaly during the LGM relative to the
pre-industrial era was —4.5+0.9 °C. The discrepancy between
this result and that of Tierney et al. (2020) primarily stems from
differences in prior selection. Consequently, they recommend
using multi-model ensembles as reliable prior estimates, provided
that the range of simulations comprehensively and realistically
captures the main sources of uncertainty.

3.4 Deep-time data assimilation

In recent years, paleoclimate data assimilation has also been
applied to the reconstruction of deep-time climates. For instance,
focusing on the Paleocene-Eocene Thermal Maximum (PETM,
56 Ma), Tierney et al. (2022) utilized the EnKF method to
reconstruct the climate state during the PETM. In addition to the
four marine geochemical indicators used in the LGMR assimila-

=
tion, terrestrial proxy indicators such as MBT,, were incorpo-

rated. The simulations were derived from a set of Early Eocene
experiments conducted using the iCESM model. The assimilated
results indicate that the global mean temperature anomaly
during the PETM was 5.6 °C (with a 95% confidence interval of
5.4-5.9 °C), corresponding to an estimated climate sensitivity of
6.5 °C (with a 95% confidence interval of 5.7-7.4 °C) (Tierney et
al., 2022).

Li et al. (2024) also employed the EnKF method to reconstruct
carbon cycle perturbations during the PETM. The proxy
indicators used included deep-sea sedimentary CaCO; and SST
proxies (81 %0, Mg/Ca, and TEXgg). The simulations were a 100-
member ensemble of experiments conducted with the cGENIE
model. The assimilated results show that atmospheric CO,
increased from 890 ppm(1 ppm=1 uL/L) to 1980 ppm, seawater
pH decreased by 0.46, and the saturation state of calcium
carbonate in seawater declined from 10.2 to 3.8.

The Pliocene (5.33-2.58 Ma) is the most recent geological
period when atmospheric CO, concentrations approached
400 ppm. Tierney et al. (2025a) used the EnKF method to
reconstruct the climate state of the Pliocene, utilizing SST proxies
(81 %0, Mg/Ca, and TEXg,) as indicators. The simulations include
14 PlioMIP2 experiments, 2 Pliocene sensitivity experiments
based on CESM2, and 21 Pliocene-like experiments based on
CESM1. The assimilated results indicate that the mid-Pliocene
warming was approximately 4.1 °C (with a 95% confidence
interval of 3.0-5.3 °C), corresponding to an estimated climate
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sensitivity of 4.8 °C (with a 95% confidence interval of
2.6-9.9 °C). Additionally, the equatorial Pacific SST gradient
exhibited an El Nino-like pattern, with lower salinity over the
North Pacific but higher salinity over the North Atlantic.

Judd et al. (2024) further employed the EnKF method to
reconstruct global mean temperatures during the Phanerozoic
(485 Ma) (PhanDA). The proxy records consisted of marine
geochemical indicators representing SST, including §'%0, Mg/Ca,

U;(;, TEXge. The simulations were 80-member snapshot experi-

ments conducted using the iCESM. The assimilated results show
that the global mean temperature varied between 11 to 36 °C,
corresponding to an estimated climate sensitivity of approxi-
mately 8 °C. Moreover, atmospheric CO, concentration was
identified as the primary driver of global mean temperature
variations throughout the Phanerozoic.

Overall, assimilation methods for the last two millennia are
relatively mature and diverse, including particle filter, EnKF and
its variants, as well as various recent online assimilation
techniques. In contrast, for the Holocene and earlier periods,
assimilation primarily relies on the EnKF method. In terms of
initial conditions, assimilation for the last two millennia and the
Holocene mainly utilizes results from transient simulations, while
for the LGM and earlier periods, snapshot simulation results are
predominantly used. Regarding proxy records, assimilation for
the last two millennia focuses on tree rings, coral 8' ¥, and Sr/Ca
ratios, etc. For the Holocene, assimilation relies more on
stalagmite 8' %0, lake and marine sediments, whereas for the
LGM and earlier periods, marine geochemical indicators are the
primary proxies used.

3.5 Existing assimilation datasets and platforms

For the last two millennia, in terms of assimilation datasets,
Hakim et al. (2016) combined the PAGES 2ka reconstruction
dataset with simulations of the last millennium to produce the
LMR, which includes temperature, precipitation, and circulation
fields. Steiger et al. (2018) further reconstructed the Paleo
Hydrodynamics Data Assimilation Product (PHYDA), encom-
passing drought-wetness indices and circulation fields for the last
two millennia. Hu et al. (2024) developed the NNU-2ka
Reanalysis. Erb et al. (2022) reconstructed Holocene tempera-
ture data, while the Tierney team produced temperature change
datasets for the LGM (LGMR), the Paleocene-Eocene Thermal
Maximum (PETM), the Pliocene, and the Phanerozoic. All these
datasets have been made openly accessible.

Among these datasets, the assimilated results for the last two
millennia include not only conventional variables, such as
temperature and precipitation, but also circulation fields at
different altitudes. In contrast, the assimilated results for the
Holocene and earlier periods primarily focus on temperature
reconstructions. Therefore, reconstructing circulation fields for
these earlier periods represents one of the future research
directions. However, achieving this goal requires a deeper
understanding of the mechanisms driving climate change during
these periods, as well as improvements in model simulations.

Regarding assimilation platforms, many of the current
assimilation algorithms are open-source, primarily based on
the EnKF or its variants in Python or MATLAB. Key platforms
include the LMR toolkit (Hakim et al., 2016), which corresponds
to the LRM, its modified version LMR Turbo (LMRt) (Zhu et al.,
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2021), and the more recent Climate Field Reconstruction (cfr)
toolkit (Zhu et al., 2024), all of which are developed in Python.
The research team led by Jessica Tierney at the University of
Arizona has also developed the DASH software package (King et
al., 2023), which corresponds to the Last Glacial Maximum
Reanalysis (LGMR) and is based on MATLAB. The AOEnKF and
HGAOENKF software packages developed by Lili Lei’s team at
Nanjing University (Sun et al., 2022, 2024) are also based on
MATLAB. Additionally, the deepDA package developed by
Mingsong Li’s team at Peking University (Li et al., 2024) is
implemented in Python. The core algorithms of all these
software packages are based on the EnKF or its improved
variants.

3.6 Case study

Oxygen isotope 8! %0, as a proxy indicator preserved in multiple
archives, is widely used in paleoclimate reconstruction across
various time periods. Previous reconstructions based on oxygen
isotopes predominantly relied on linear regression models, often
neglecting the physical mechanisms underlying the relationship
between 5' %0 and climate variables (Liu et al., 2023). Today,
with the availability of isotope-enabled simulations, the physical
mechanisms driving 8' %0 variations can be better understood,
enabling assimilation of oxygen isotopes from various archives
using nonlinear PSMs (Tierney et al., 2020; Lyu et al., 2024).
Lyu et al. (2024) demonstrated that incorporating 8' %0 into the
assimilation process improves the reconstruction of South
American monsoon variability compared to earlier datasets such
as LMR and PHYDA. So, how does assimilation skill differ
between nonlinear PSMs and traditional linear PSMs? Below, we
specifically compare the differences in SST assimilation using
linear and nonlinear PSMs for coral &' 0.

Fig. 3A and 3B show the Nino3.4 indices from assimilated
results based on linear and nonlinear PSMs, respectively,
compared with observations. The results indicate that both
methods yield assimilated results with high correlations with
observations (r=0.82, 0.81, p<0.01), with no significant
difference between them. Fig. 3C and 3D illustrate the covariance
spatial fields used in the two assimilation methods, using the
Palmyra Island record as an example. The spatial correlation
fields between SST and &' %0 at Palmyra Island and global SST
resemble the typical ENSO pattern, indicating that both variables
effectively represent SST in the Nino3.4 region and can be used
for assimilating the Nino3.4 index. The assimilated results show
minimal differences between the two methods, with the non-
linear PSM assimilation results exhibiting a wider distribution.
The coefficient of efficiency for the nonlinear PSM is 0.35, which
is lower than the 0.55 for the linear PSM. This suggests that the
two methods perform similarly in reproducing Nifio3.4 index
variability, though the nonlinear PSM results cover a broader
range.

This indicates that the assimilation performance of nonlinear
PSMs based on isotope-enabled simulations is comparable to that
of traditional linear PSMs. Consequently, applying nonlinear
PSMs constructed from simulations to the assimilation of proxy
indicators such as stalagmite oxygen isotopes holds promising
prospects for the future. Additionally, these approaches can be
used to refine linear PSMs for proxy indicators, such as
foraminiferal isotopes and tree-ring isotopes, as well as to
validate assimilated results.



95% ClI
IQR

median —— ERsstv5 (corr=0.82, CE=0.55)

Nino3.4 (°C)

Linear PSM
1960 1980

1860 1880 1900 1920

Year

1940 2000

90°N

60°N

30°N

0°

30°S

60°S

90°S

90°E

135°E 180°  135°W  90°W  45°W 0”

RN [ 11111 T

)
|
-1 -08 -06 -04 -02 0 02 04 06 08 1

B
95% ClI —— median —— ERsstv5 (corr=0.81, CE=0.35)
41 IQR
o
<
)
[}
=
z
Nonlinear PSM
1860 1880 1900 1920 1940 1960 1980 2000
Year
D
QonN 1 1 1 1 1 1 1
60°N
30°N
o
30°S
60°S
90°S
0° 45°E 90°E  135°E 180°  135°W  90°W  45°W 0°
BT T T 1T T T T T .
-1 08 06 04 02 0 02 04 06 08 1

Fig. 3 Comparison of the reconstructed Nino3.4 indices based on the linear PSM (A) and the nonlinear PSM (B) during the observational period, along with the spatial
correlation fields representing the covariance matrices used in assimilation (C, D). In panel D, seawater 5'%0g, was converted to coral %0, before calculating the correlation

coefficients.

4. Prospects

Since the concept of paleoclimate data assimilation was
introduced in 2000, it has made significant progresses in
paleoclimate research. This paper systematically reviews the
development of paleoclimate data assimilation, its applications in
different typical periods, and the key scientific questions it
addresses. It can be said that paleoclimate data assimilation has
greatly enhanced our understanding of the spatiotemporal
characteristics and evolutions of climate in various historical
periods. In periods with well-established applications of paleocli-
mate data assimilations, such as the last two millennia,
assimilation methods can also be used to improve our under-
standing of the mechanisms behind climate change. Currently,
research plans related to paleoclimate data assimilation within
several international scientific programs are also being actively
prepared, such as the Paleoclimate Data Assimilation Model
Intercomparison Project (Paleo-DA MIP) in CMIP7 and the
Paleoclimate Reanalysis and Integration of Synthesis and Models
(PRISM) project in PAGES2k.

Indeed, paleoclimate data assimilation research is still in its early
stages. Even the currently widely used offline EnKF method, while
simplified and effective, still has several aspects that urgently
require resolution or further refinement. The following sections will
outline prospects for key scientific questions that can be addressed
by paleoclimate data assimilation, its advantages and limitations,
potential improvements, and future research directions.

4.1 Key scientific questions that can be addressed by
paleoclimate data assimilation

How to better reconstruct the characteristics and rules of

paleoclimate by integrating proxy records and model simulations
is the primary scientific question that paleoclimate data
assimilation needs to address. Beyond the fundamental recon-
structions of multiple scale climate changes, paleoclimate data
assimilation is also applied to resolve controversies between
proxy records and simulations, as well as among proxy records
themselves. A typical example is the Holocene temperature
conundrum. Erb et al. (2022) argue that the Mid-Holocene
temperature was higher than the past millennium, whereas the
assimilated results of Osman et al. (2021) and Bova et al. (2021)
do not show a pronounced Mid-Holocene warming period. Erb et
al. (2022) also conducted sensitivity experiments, revealing that
while seasonal biases in proxy indicators may reflect summer
temperature trends, the potential impact of such biases is
insufficient to align the reconstructed global mean temperature
with the warming trend observed in transient simulations. In
contrast, Osman et al. (2021) suggest that the overemphasis on
sparse proxy data from the Southern Hemisphere may partially
induce the Mid-Holocene warming period, but this only accounts
for a fraction of the warm anomaly. Further research is needed to
reconcile the discrepancies between proxy records and simula-
tions, particularly regarding whether paleoclimate data assimila-
tion can contribute to this issue.

Recently, Hao et al. (2025) reconstructed Holocene tempera-
tures using global marine sediment proxies and found significant
spatial heterogeneity in Mid-Holocene temperature anomalies.
Specifically, winter and annual mean temperatures were higher
in Europe and high-latitude Eurasia, while other regions
exhibited lower temperatures. The discrepancies were attributed
to a cold bias in high-latitude regions due to biases in vegetation
and sea ice feedbacks in the models, as well as a warm bias due to
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the concentration of proxy records in Europe.

Additionally, recent alkenone-based reconstructions in mid-
latitude Eurasia (Jiang et al., 2024) also highlight spatial
heterogeneity in Holocene temperature trends, showing cooling
in northeastern China but warming in southwestern Siberia. This
provides crucial insights about the regional localization of
covariance matrices when assimilating proxy records at different
regions. Furthermore, a recent study (Liu et al., 2025) indicates
that proxy records may underestimate temperature seasonality,
causing reconstructed Holocene temperature trends to be
dominated by summer temperatures. Whether data assimilation
can reduce this uncertainty by integrating simulations to
produce a more reliable Holocene temperature trend remains
an important question for further exploration.

In addition to reconstructing climate characterisitics, data
assimilation is being applied to mechanism studies, particularly
for the well-established period of the last two millennia.
Currently, assimilation for the last two millennia has successfully
reconstructed circulation fields, while assimilation for other
typical periods remains focused on reconstructing the spatio-
temporal characteristics of variables such as temperature. For
example, studies of the past millennium have examined multi-
scale monsoon precipitation or drought variations and their
driving mechanisms (Erb et al., 2020; Lyu et al., 2024). This is
because the PSMs linking proxy indicators to circulation changes
during the last two millennia are relatively well-understood. Key
factors include the availability of proxy records for calibration of
PSMs during the instrumental period, and the mature climatic
interpretation of proxy indicators for this period.

In terms of algorithms, circulation fields reconstructed using
particle filter exhibit greater consistency with temperature and
precipitation variations, whereas other methods, which assim-
ilate circulation fields and temperature/precipitation separately,
show less consistency. However, the reliability of particle filter for
reconstructing circulation fields depends heavily on the model’s
ability to accurately simulate the underlying mechanisms.

Beyond temperature, precipitation, and circulation fields,
paleoclimate data assimilation can also reconstruct a broader
range of climatic and environmental variables. For instance, Li et
al. (2024) reconstructed carbon cycling and carbonate satura-
tion states during the PETM, providing valuable insights into
ocean acidification and seawater carbonate saturation. This
approach also offers a novel perspective for reconstructing the
climatic and environmental conditions of even older geological
periods.

Additionally, quantitatively differentiating the contributions
from internal variability and external forcings, another key
scientific question in paleoclimate research, is also an important
aspect of mechanism studies facilitated by paleoclimate data
assimilation. Previous research often relied on single-forcing
sensitivity experiments to differentiate these contributions, but
such methods suffer from model dependency. In contrast,
paleoclimate data assimilation, by integrating results from
multiple models, can provide a more robust estimate of the
responses to external forcings, thereby contributing to addressing
this issue.

For example, under specific external forcings, early assimila-
tion methods yielded results that did not exceed the range of
internal variability from the model simulations (Widmann et al.,
2010). In the assimilation process, sources of internal variability
include randomly selected initial conditions from multi-model
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ensembles and higher-frequency variability beyond the signal (or
noise) in proxy records. Sources of the response to external
forcings encompass the simulated responses from multi-model
ensembles and the signal within the proxy records. By
quantitatively assessing the reliability of these two sources, a
more accurate representation of the responses to external
forcings and internal variability can be achieved, thereby
enabling a better quantitative differentiation of their relative
contributions to climate change.

In terms of contributing to future climate projections, climate
sensitivity is also one of the key scientific questions frequently
addressed in paleoclimate data assimilation. Climate sensitivity is
defined as the change in the Earth’s surface temperature when
atmospheric CO, concentration doubles. Its calculation method
(Tierney et al., 2020) is as follows:

ECS = AGAI\I/I{ST X Fxc0, (7)
where AGMST is the change in global mean surface temperature
for the typical period obtained through assimilation, AR is the
radiative forcing for that period, and Fyxco, 18 the radiative
forcing resulting from a doubling of CO, concentration. In the
calculation process, AR and F,,, are estimated from model
simulations, while the assimilated results provide the value of
AGMST. Based on the LGMR, Tierney et al. (2020) estimated the
climate sensitivity to be 3.4 °C (with a 95% confidence interval of
2.4-4.5°C). Tierney et al. (2025a) estimated the climate
sensitivity based on Pliocene temperature assimilation to be
4.8 °C (with a 90 % confidence interval of 2.6-9.9 °C). Judd et al.
(2024) estimated the climate sensitivity based on Phanerozoic
temperature assimilation to be approximately 8 °C. These results
show that the value of climate sensitivity increases with the
temperature of the typical periods, and the variation in
confidence intervals indicates that the distribution of assimilated
results expands as the period extends further back in time.
Furthermore, the uncertainty in estimating radiative forcing for
the typical period also significantly impacts the calculation of
climate sensitivity, underscoring the need for further improve-
ment in reconstructing external forcings and enhancing the
accuracy of model feedbacks for these periods.

4.2 Limitations of paleoclimate data assimilations and
potential improvements

In recent years, researchers have made significant improvements
to address the limitations of various components in paleoclimate
data assimilation, such as PSMs and assimilation algorithms.
These improvements are reflected in better selection of priors for
assimilation, more accurate construction of relationships be-
tween observed and simulated variables, and advances in online
assimilation techniques.

As previously discussed, the quantification of uncertainties is
one of the primary challenges in paleoclimate data assimilation,
with significant difficulties in uncertainty estimations of both
proxy records and model simulations. When calculating the
uncertainty of proxy records, it is essential to account for
statistical uncertainty inherent in the records, dating errors,
instrumental measurement errors, spatial representativeness
errors, and representation errors of the PSM. Quantifying these
uncertainties requires in-depth investigation and close collabora-
tion with experts in reconstruction fields. For estimating the



uncertainty of model simulations, a large number of independent
samples of long-term climate means are needed, specifically,
long-term simulations that fall within the observational error
range but vary in external forcings, boundary conditions, and
model parameters. Currently, computational resources are
insufficient to meet this demand. Moreover, most current
assimilation studies rely on results from a single model. Future
assimilation efforts should incorporate multi-model simulations
to better quantify the uncertainties associated with model
outputs.

Regarding the quality control and error estimation of proxy
records, although more proxy records can provide more
paleoclimate information and contribute to more accurate
reconstructions, simply adding new proxy records into the
assimilation process is not sufficient. Instead, appropriate quality
control must be applied, followed by the quantification of their
uncertainties. Then, an objective assessment of the weight that
they account for in the assimilation process should be made.

During the assimilation process, it is essential to first quantify
the contributions of proxy records from different regions for
assimilations targeting different periods, scales, and variables
(Wu et al., 2025). Regarding dating errors, the high accuracy of
tree-ring dating can be leveraged in the last two millennia to
partially calibrate proxy data with annual or higher resolutions,
such as coral records (Hu et al., 2024). For longer time scales, in
the absence of proxy records with precise dating for calibration,
integrating dating errors into the assimilation process requires
thorough collaboration with experts in reconstruction fields to
incorporate their empirical knowledge. Additionally, beyond the
commonly used proxy records, other less frequently applied
records, particularly qualitative materials such as historical
documents, also need to be considered for integration into
assimilation. To achieve this, the error estimation methods for
different types of proxy records should account for characteristics
like resolution and dating accuracy, enabling the effective fusion
of diverse data sources.

In terms of PSM construction and refinement, the models for

’
tree-rings, coral oxygen isotopes, marine foraminifera, and U§7

are now relatively well-developed. However, PSMs for stalagmite
oxygen isotopes, pollen, and other proxies require further
development and improvement (Ning et al., 2025a). In
particular, PSMs linking these proxies to precipitation remain
in their preliminary stages. In this context, with the aid of oxygen
isotope-enabled simulations, PSMs for isotope-related proxies
such as stalagmite oxygen isotopes can be effectively constructed
(Ning et al., 2025b). Nonetheless, the differences between these
nonlinear operators and traditional linear operators need to be
systematically compared to evaluate their respective advantages
and limitations. Additionally, machine learning methods have
already been applied to construct nonlinear PSMs, and hold
potential for further refinement in the future (Fang and Li, 2019;
Wei et al., 2024). For example, Fang and Li (2019) developed a
nonlinear PSM for tree-ring width using an artificial neural
network approach, demonstrating that its assimilation perfor-
mance surpasses the linear regression and the VS-Lite model.
This also confirms the feasibility of applying machine learning
methods to the assimilation of other variables in the future.

In terms of validating assimilated results, if the assimilated
period overlaps with the instrumental era, observational data can
be used for validation, with common metrics including the

correlation coefficient, root mean square error, and coefficient of
efficiency (Zhang et al., 2025). However, for longer time periods
lacking observational data, a common approach is to withhold
25% of the proxy records for independent validation (Hakim et
al., 2016; Tierney et al., 2020; Osman et al., 2021; Wu et al.,
2025). This method, however, incorporates the uncertainties of
the proxy records themselves, which may affect the objectivity of
the validation. Recent studies have attempted to use independent
observational data, such as borehole temperatures, for validation
(Meng et al., 2025). Therefore, exploring more objective methods
for validating assimilated results remains an important direction
for future research.

4.3 Future research directions of paleoclimate data
assimilations

Building on the aforementioned improvements, paleoclimate
data assimilation can be further developed in several areas,
including online paleoclimate assimilation, paleoclimatic dyna-
mical constraints, and the applications of deep learning and big
data.

4.3.1 Paleoclimate online data assimilation

In terms of future developments in assimilation algorithms,
besides improvements to traditional offline assimilation methods
(Sun et al., 2022, 2024), online assimilation has recently
emerged (Perkins and Hakim, 2020; Meng and Hakim, 2024;
Sun et al, 2025). It is important to note, however, that
paleoclimate online data assimilation differs from online integra-
tion assimilation used in modern climate studies. The main
distinction lies in the fact that the initial field at the current time
step is generated from the state vectors of the preceding
12 months using machine learning methods (Meng and Hakim,
2024). Compared to conventional offline assimilation methods
and online assimilation methods based on LIM, machine
learning-based online assimilation has demonstrated higher
accuracy for the last two millennia, particularly under conditions
where proxy records are sparse (Sun et al., 2025).

Current online assimilation efforts largely focus on monthly
scale reconstructions for the last two millennia. Key challenges
include whether temporal resolution can be further increased,
whether the methods can be extended to longer time periods, and
how to enhance computational efficiency while leveraging the
advantages of online assimilation in constructing initial fields.
Moreover, deep learning-based online assimilation algorithms
still suffer from signal attenuation issues, requiring methods such
as inflation to increase initial ensemble perturbations to enhance
ensemble spread (Meng and Hakim, 2024; Sun et al., 2025).

4.3.2  Applications of paleoclimatic dynamical constraints in
paleoclimate data assimilation

As the primary dynamical constraint in the assimilation process,
the refinement and application of paleoclimate dynamics play a
crucial role in advancing assimilation methods. First, further
clarifying the climatic interpretations of proxy indicators is
essential. Currently, the climatic interpretations of many proxies
are often inferred based on correlation coefficients, while the
underlying physical processes remain poorly understood. For
example, while ice core §'0 from the South American Andes is
commonly assumed to reflect ENSO variability, this correlation
actually arises from the influence of orbital scale SST anomalies
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in the eastern equatorial Pacific on mid-tropospheric water vapor
5180 (Liu et al., 2023).

Additionally, variations in stalagmite 3'%0 in East Asia, which
may reflect local precipitation, moisture source shifts, and
upstream depletion effects, can be quantitatively disentangled
using isotope-enabled simulations (Ning et al., 2025b), thereby
improving the accuracy of PSMs. By leveraging models to
determine the climatic interpretation of proxies, we can
quantitatively distinguish the representations of a single proxy
to different climate variables. This capability not only expands
the application of assimilation to local variables but also enables
the assimilation of large-scale SST or circulation fields through
teleconnection relationships . Furthermore, when integrating
different types of proxy records in assimilation, the quantitative
representation of climate variables by various proxies should also
be taken into account.

However, it is important to note that when applying dynamical
constraints, the covariance matrix of simulations should not be
used indiscriminately. Models themselves contain errors; for
instance, Sanchez et al. (2021) have found that common model
biases, such as the double ITCZ bias, significantly impact ENSO
reconstruction from coral records in the SPCZ region, necessitat-
ing error correction before assimilation. Similarly, biases in
simulating teleconnections also affect assimilated results . On the
other hand, the strength of teleconnection influences from large-
scale circulation fields varies across different characteristic
periods (Ning et al., 2025a). Therefore, dynamical constraints
in assimilation must also evolve over time. Currently, while
transient simulations are used for periods such as the last two
millennia (Hakim et al., 2016; Wu et al., 2025) and the Holocene
(Erb et al., 2022), longer-term assimilations (e.g., Tierney et al.,
2020; Li et al.,, 2024) predominantly rely on snapshot
simulations. In future research, the application of transient
simulations for longer periods (such as iTraCE experiments) could
improve the selection of initial fields in assimilation by better
capturing the effects of external forcings on the climate system.
Thus, while the usage of transient simulations has the potential
to improve long-term assimilations, further comparative valida-
tion is required.

Furthermore, the dynamical constraints derived from paleo-
climate data assimilation results can assist in optimizing the
selection of sites for proxy record collection. Huntley and Hakim
(2010) conducted a series of sensitivity experiments and found
that when observations are sparse, the location of sites is more
critical to the accuracy of assimilated results than the number of
sites. This suggests that site selection for proxy record collection
can be optimized by referencing assimilated results. Wu et al.
(2025) also observed that, with a comparable number of proxy
records, the spatial distribution of these records significantly
impacts assimilated results. Recent improvements in assimilation
algorithms have also focused on enhancing performance under
conditions of sparse proxy data (Sun et al., 2025). Therefore,
sensitivity experiments can be designed to quantitatively
evaluate the contribution of site information from proxy data
to climate reconstructions. In summary, compared to direct
model simulations, paleoclimate data assimilation incorporates
the climatic interpretation of proxy records, enabling it to provide
more informed theoretical guidance for selecting proxy collection
sites based on the type and attributes of the proxies (Fang and Li,
2016). However, most of these findings are based on assimilation
in the last two millennia. Similar sensitivity analyses for longer
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time periods remain to be conducted.

4.3.3  Applications of deep learning and big data in paleoclimate
data assimilation

Machine learning and big data have been widely applied in Earth
sciences, offering new approaches to many complex problems. In
paleoclimate data assimilation research, deep learning methods
were first utilized in constructing PSMs. Their advantage lies in
not requiring a clear understanding of the physical mechanisms
linking proxy indicators to climate variables (Fang and Li, 2019).
However, their construction demands large amounts of data for
training, which currently limits their application primarily to
proxy indicators such as tree rings (Fang and Li, 2019) and
corals (Wei et al., 2024), as these records have sufficient data
during the observational period. For other proxy indicators with
only limited temporal coverage overlapping with the observa-
tional record, constructing PSMs based on deep learning remains
challenging. Nonetheless, this lack of explicit physical under-
standing may introduce potential biases into assimilated results.
Moreover, similar to linear PSMs, deep learning-based PSMs also
carry the risk of overfitting (Fang et al., 2022). Additionally, the
impact of proxy record quality on model construction requires
thorough evaluation.

Besides deep learning, other machine learning methods also
hold significant potential for application in paleoclimate data
assimilation. For example, causal inference methods (Su et al.,
2023) can be used to clarify the genuine causal relationships
between proxy indicators and climate variables, moving beyond
the commonly used linear correlations. This could enhance the
reliability and interpretability of reconstruction processes.
Transfer learning offers considerable advantages in constructing
PSMs, as it can overcome limitations such as scarce training data
and high computational costs. However, it still carries the risk of
overfitting. Before assimilating proxy records with ambiguous
climatic interpretations, causal discovery algorithms can be
employed to determine whether a specific climate variable
directly drives changes in the proxy indicator or whether
multiple variables involve confounding factors. This approach
would help in selecting the most reliable proxy indicators for
assimilation. Additionally, physics-informed neural networks
can leverage known physical laws to guide the training of neural
networks. This enables the construction of PSMs that adhere to
physical laws, even in regions where proxy records are sparse.

The construction of data-driven climate models is also one of
the primary applications of machine learning in the field of data
assimilation. For instance, Meng and Hakim (2024) introduced
deep learning into paleoclimate data assimilation to develop an
online assimilation system. They found that this approach yields
more accurate reconstructions of tropical upper-ocean tempera-
tures compared to traditional LIM. Sun et al. (2025) further
advanced this by building an online assimilation framework for
the last two millennia based on deep learning-based networks
and an integrated hybrid EnKF. Their results demonstrate that,
through techniques such as inflated observational errors, this
method achieves higher accuracy than conventional LIM-based
online assimilation and offline assimilation, particularly in earlier
periods when proxy records are relatively sparse.

In addition, machine learning has also been applied to model
error estimation. For example, Peng et al. (2024) developed a
model error estimation method based on convolutional neural
networks to quantify errors arising from inaccurate model

n



parameters and initial conditions. When applied to data
assimilation with simplified models, this method demonstrated
effective correction of model errors, suggesting its potential for
future application in paleoclimate data assimilation.
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