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Abstract Reconstructing paleoclimate characteristics and understanding their evolution rules is a key question in Earth system science and global change 
research. It helps clarify the historical position of the modern warming period, understand the features and mechanisms of climate change under warming 
backgrounds, and thereby improve the accuracy of future climate projections. Proxy records and numerical modeling are two primary approaches in current 
paleoclimate study. As an emerging methodology, paleoclimate data assimilation effectively integrates paleoclimate proxy records with numerical simula
tions, combining their advantages to enhance the accuracy of paleoclimate reconstructions. This paper systematically reviews recent progresses in paleo
climate data assimilation. It first outlines the historical developments of major paleoclimate data assimilation methods, discusses their advantages, 
disadvantages, and applicability, and highlights recent improvements such as the application of machine learning methods and the developments of online 
assimilation. Then, it introduces applications of paleoclimate data assimilation according to different typical paleoclimate periods, particularly addressing 
challenges associated with various types of proxy data, and summarizes currently available open-source datasets and algorithm platforms. A specific case 
study is presented to illustrate the application of assimilating oxygen isotope simulations. Finally, the paper discusses unresolved issues and challenges in 
paleoclimate data assimilation studies, and outlines potential directions for future research. 
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1. Introduction  

Paleoclimate research contributes to understanding climate 
change mechanisms, identifying key climatic factors influencing 
the environment, and evaluating contemporary climate numer
ical models. This, in turn, helps improve predictions of future 
climate and environmental changes and supports sustainable 
developments (Wang, 2022). Paleoclimate proxy records and 
model simulations are two primary research methods in 
paleoclimate studies. Each of them has its own advantages: 
paleoclimate proxy records represent the historical evidence of 
paleoclimate, while model simulations incorporate dynamic 
mechanisms. 

Paleoclimate proxy records refer to various biological, physical, 
and chemical indicators used to reconstruct paleoclimates. For 
the last two millennia, proxy datasets include the PAGES2k 
dataset (Past Global Changes 2k) (PAGES2k Consortium, 2017) 
and the Mann09 dataset (Mann et al., 2009). Holocene proxy 
datasets include Temperature 12ka (Kaufman et al., 2020), the 
Arctic Holocene Proxy Climate Database (Sundqvist et al., 2014), 
and the LegacyClimate 1.0 dataset (Herzschuh et al., 2023), etc. 
In addition, there are various integrated datasets dedicated to 
specific proxy types, such as the CoralHydro2k dataset for coral 

records (Walter et al., 2023) and the SASIL dataset for stalagmite 
records (Comas-Bru et al., 2020). These datasets have signifi
cantly contributed to the paleoclimate reconstruction across 
different typical periods. 

For paleoclimate modeling, the Paleoclimate Modelling Inter
comparison Project (PMIP) has long been dedicated to under
standing past climate states and their responses to external 
forcings through model simulations. Currently, the latest PMIP4 
results have been released, which include transient simulations 
of the past millennium (past1000), as well as equilibrium 
simulations for the Mid-Holocene (MH), the Last Glacial 
Maximum (LGM), the Last Interglacial (LIG), the mid-Pliocene, 
and the Early Eocene (EECO), the Paleocene-Eocene Thermal 
Maximum (PETM), and the pre-PETM (Kageyama et al., 2018). 
Continuous transient simulations include multi-member ensem
ble simulations for the past millennium, such as the Community 
Earth System Model-Last Millennium Ensemble (CESM-LME) 
(Otto-Bliesner et al., 2016), and the Nanjing Normal University 
Last Two Millennium Simulation (NNU-2ka) (Wang et al., 
2016). For the Holocene, continuous transient simulations 
include the Nanjing Normal University Holocene Simulation 
(NNU-Holocene) (Wan et al., 2020), the HT-11.5ka experiment 
by the Institute of Atmospheric Physics, Chinese Academy of 
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Sciences (Tian et al., 2020), the experiment based on MPI-ESM 
by the Max Planck Institute for Meteorology in Germany (Bader 
et al., 2020), the experiment based on HadCM3 by the Hadley 
Centre in the UK (Hopcroft and Valdes, 2021, 2022), and the 
experiment based on EC-Earth by Stockholm University in 
Sweden (Zhang et al., 2021). Continuous transient simulations 
since the LGM include the Simulation of the Transient Climate of 
the Last 21,000 Years (TraCE-21ka) (Liu et al., 2009) and the 
latest Isotope-enabled Simulation of the Transient Climate of the 
Last 21,000 Years (iTraCE-21ka) (He et al., 2021). Additionally, 
there are accelerated transient simulations covering the past 
300,000 years (Xie et al., 2019; Yan et al., 2023). These 
simulations contribute to understanding the mechanisms of 
paleoclimate changes across different typical periods. 

However, each of these two approaches has its own drawbacks. 
For instance, paleoclimate proxy records are often point-based, 
with spatiotemporal discontinuities and uneven distributions. 
They are subject to dating errors, and the climatic indications of 
some proxies are ambiguous or controversial (Chen et al., 2023). 
Moreover, proxies primarily reflect surface variables such as 
temperature or precipitation. Additionally, paleoclimate proxy 
records involve two types of errors, i.e., instrumental errors 
arising from human factors or uncertainties in measurement and 
analytical instruments during sampling and analysis, and spatial 
representativeness errors due to mismatches between the spatial 
scale represented by the proxy records and that of climate model 
grids (Li, 2013). 

On the other hand, model simulations often reflect the internal 
variability of the models themselves, which may not accurately 
capture the phases of true internal variability in paleoclimates. 
They also exhibit uncertainties in the magnitudes of responses to 
external forcings. Furthermore, although paleoclimate modeling 
aims to better represent external forcings and feedbacks, current 
state-of-the-art models are primarily developed and calibrated for 
future climate predictions and projections rather than being 
specifically designed or optimized for paleoclimate studies 
(Kageyama et al., 2018), which may introduce biases in 
simulation accuracy. 

Therefore, integrating the advantages of both approaches and 
compensating for their respective drawbacks are essential in 
paleoclimate research to derive more accurate paleoclimate 
characteristics and rules. This is the original motivation of 
paleoclimate data assimilation (von Storch et al., 2000). 
Paleoclimate data assimilation provides a mathematical frame
work to extract useful information from proxy records and 
simulations. Proxy records offer evidence of climate changes, 
while simulations provide a physically constrained framework 
based on dynamical equations. By quantitatively estimating 
errors in both proxy records and simulations, this approach 
constrains paleoclimate model runs (or directly adjusts simula
tion results), yielding more accurate and spatiotemporally 
continuous paleoclimate reconstructions (Hakim et al., 2013). 

Thus, paleoclimate data assimilation shares a common 
objective with modern climate data assimilation, i.e., utilizing 
spatially discontinuous observations to generate spatially reg
ularized reanalysis data, especially for variables not directly 
observed. However, paleoclimate data assimilation faces unique 
challenges, primarily because it deals with proxy records whose 
physical meanings are often unclear. This introduces complex
ities in assimilation steps, such as the design of observational 
operators and error quantification. For example, stalagmite δ 1 8O 

is a proxy for monsoon intensity, but its specific climatic 
interpretation (e.g., circulation strength, moisture source varia
tions) remains debated. To reconstruct monsoon precipitation 
using such proxy, it is necessary to develop nonlinear proxy 
system models (PSMs) with the aid of isotope-enabled simula
tions, posing challenges distinct from modern data assimilation. 

Due to its unique advantages, many controversies between 
proxy records and simulations, such as the Holocene tempera
ture conundrum (Liu et al., 2014), can also be addressed through 
paleoclimate data assimilation. By providing continuous spatial 
fields, assimilation enables more precise depictions of the spatial 
distribution of global and regional climate changes, thereby 
enhancing the understanding on responses of both global and 
regional climate to different forcings. Furthermore, assimilation 
can contribute to key paleoclimate scientific questions, such as 
climate sensitivity, by delivering more accurate results that offer 
more reliable references for future projections. Consequently, it 
facilitates a deeper understanding of the historical position and 
impacts of the modern warming period, promoting the integra
tion of paleo- and modern climate and environment research 
(Wang, 2022). 

Previous studies have provided detailed reviews of the 
principles, methods, and applications of paleoclimate data 
assimilation (e.g., Fang and Li, 2016; Zhang et al., 2025; 
Tierney et al., 2025b). In recent years, significant advancements 
have been made in assimilation algorithms and “online” 
assimilation techniques (Sun et al., 2022; Meng and Hakim, 
2024). Notably, the inclusion of oxygen isotope simulations has 
improved nonlinear proxy system models (PSMs) and online 
assimilation, attracting widespread attention in the paleoclimate 
community. Therefore, this paper will briefly review the 
historical developments of the principles, methods, and applica
tions of paleoclimate data assimilation, with a focus on recent 
innovations and techniques (e.g., online assimilation strategies). 
It will then discuss the theoretical, technical, and data-related 
challenges currently faced by paleoclimate data assimilation 
studies. Finally, the paper will also explore the potential 
applications of paleoclimate data assimilation to key scientific 
questions and outline future research directions for priority 
investigation. 

2. Paleoclimate data assimilation methods and 
evolutions   

In simple terms, the fundamental concept of paleoclimate data 
assimilation is to use proxy records to constrain model 
simulations, combining the results from previous time steps to 
produce an optimal estimate of the current climate state. Its core 
principle is based on traditional Bayesian theory:  

P P Px y y x x( | ) ( | )· ( ) (1)

where x represents the reconstructed climate variables, y
represents the proxy records, P x( ) stands for the prior probability 
provided by the model simulations, P y x( | ) is the likelihood 
function, indicating the probability of proxy data given the 
climate state, and P x y( | ) refers to the posterior probability of the 
climate variables obtained after assimilation, i.e., the assimilated 
results. As shown in the formula, the final assimilated results 
depend on both the prior distribution and the likelihood. Efforts in 
paleoclimate data assimilation thus focus on estimating these 
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two components and solving for the posterior distributions. 
Therefore, paleoclimate data assimilation primarily consists of 
four components, i.e., paleoclimate model simulations, proxy 
records, PSMs, and assimilation algorithms. 

The specific process (as illustrated in Fig. 1) is as follows: for a 
given time step and specific variables in paleoclimate data 
assimilation, paleoclimate simulations are first used to generate 
the required data, serving as the prior estimate. Then, the prior 
estimate is transformed into the proxy data space through PSMs. 
The difference between the actual proxy record value and the 
proxy record value estimated via the PSMs at that time step is 
calculated, referred as the “innovation” in paleoclimate data 
assimilation. Finally, the weight of the innovation is calculated 
based on the model covariance and proxy record error, and is 
applied to update the prior estimate, thereby obtaining the 
posterior estimate (Talagrand, 1997). This process will be 
repeated for next time step, ultimately producing assimilated 
results that incorporate both historical climate evidence and 
physical mechanisms. 

In practical paleoclimate data assimilation studies, the primary 
distinctions lie in the estimation and optimization of prior 
information. Based on their chronological development, the 
mainstream paleoclimate data assimilation algorithms currently 
include nudging, particle filter, offline ensemble Kalman filter, 
and recent online assimilation methods (Fig. 2). Brief introduc
tions to the principles and applications of these methods are as 
follows.  

2.1 Nudging  

The nudging method is a data assimilation technique that adds a 
forcing term into the forecast model, and gradually drives the 
model state towards the observations (Hoke and Anthes, 1976). 
The formula is as follows:   

f H d H= ( ) + ( ( )) + (2)n n T n n n1 1 1

where n represents the model state at time tn, which is a function 

f of the state n 1 at time tn 1; is the nudging parameter; H is 
the operator that transforms the model state into the observation 
space; d n is the observational data at time tn; and n is random 
noise. 

The primary advantage of the nudging method is its simplicity, 
straightforwardness, and ease of implementation, while also 
offering strong constraint effects. However, its drawbacks are 
equally evident, since nudging can only assimilate variables 
directly output by the model, requiring the transformation of 
observational data into model-output variables during assimila
tion. Moreover, as the formula indicates, the parameter 
determines the strength of the nudging effect. Too strong 
nudging may induce erroneous dynamics due to excessively 
rapid convergence, while too weak nudging may fail to effectively 
constrain the results with observations (Dubinkina and Goosse, 
2013). Additionally, the selection of is typically based on 
empirical approaches, lacking a solid physical foundation. 

In terms of application, the nudging method was the earliest 

Fig. 1 Conceptual framework for paleoclimate data assimilation.   

Fig. 2 Evolution of paleoclimate data assimilation methods.   
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approach used in paleoclimate data assimilation. von Storch et 
al. (2000) employed nudging to reconstruct the North Atlantic 
Oscillation (NAO) index during historical periods, and found that 
the assimilated results better reproduced the true variations of 
historical climate compared to model simulations. When 
comparing three assimilation methods, including nudging, for 
reconstructing Northern European climate over the past 
millennium, Widmann et al. (2010) concluded that nudging 
could effectively reconstruct climate changes over the past 
millennium but struggled to capture target modes of variability 
that differed from the model’s internal variability. Dubinkina and 
Goosse (2013) compared the performance of three methods, i.e., 
nudging, particle filter, and particle filter integrated with 
nudging, in reconstructing high-latitude Southern Hemisphere 
climate over the past 150 years. They found that pure nudging 
underperformed the other two methods in assimilating variables 
with no direct observations (such as sea surface salinity, SSS), as 
it failed to reflect oceanic dynamical processes. Since then, there 
are relatively limited applications of nudging in paleoclimate data 
assimilation research. 

2.2 Particle filter  

The basic idea of a particle filter is to approximate the posterior 
probability distribution of the state by weighting a set of random 
model sample particles based on Bayesian likelihood estimation. 
The formula for calculating the posterior probability distribution 
(Dubinkina and Goosse, 2013) is as follows:  

( )p d( | ) = (3)n n

i

M

i
n n

i
n

= 1

where is the kernel density, and i
n is the weight of each 

particle, calculated using the following formula:  

( )K p d= | (4)i
n n

i
n1

where K is the normalization coefficient, and ( )p d |n
i
n

represents the likelihood of the observations given the model 
state. 

The advantage of a particle filter is that it does not require the 
prior distribution to be Gaussian (Dubinkina and Goosse, 2013), 
nor does it assume a linear relationship between observations 
and prior estimates. Its drawbacks include high requirements on 
the quantity and quality of observational data, as well as a 
tendency for weights to concentrate on a small number of 
particles. 

In the early applications of particle filter, simplified versions 
were often employed, where only the simulation closest to the 
observations was selected as the optimal particle to serve as the 
initial condition for the next assimilation step (Goosse et al., 
2006; Widmann et al., 2010). For instance, Goosse et al. (2006) 
applied a simplified particle filter method to simulate Northern 
Hemisphere climate over the past millennium. Using only a small 
number of particles (30 particles) and simple weight calculations, 
they were able to generate climate states consistent with the 
records. In subsequent studies, the particle filter was compared 
with nudging, such as in the two aforementioned stduies 
(Widmann et al., 2010; Dubinkina and Goosse, 2013). Regard
ing the performance of particle filter alone, Widmann et al. 
(2010) applied a simplified particle filter to assimilate tempera

ture data in Northern Europe, successfully reproducing multi
decadal temperature variability despite using only 11 particles 
(simulation results). This suggests that the common issue of 
particle degeneracy did not arise. Similarly, Dubinkina and 
Goosse (2013) found that particle filter effectively reconstructed 
variables without direct observations, such as SSS, particularly 
when combined with nudging. In terms of improving particle 
filter, Dubinkina et al. (2011) and Annan and Hargreaves (2012) 
incorporated residual resampling methods into the algorithm. 
Their results demonstrated that the standard particle filter with 
residual resampling significantly outperformed simplified particle 
filter in terms of assimilation accuracy. 

Besides the algorithm improvements, beyond the reconstruc
tion of temperature and circulation fields, particle filter has been 
applied in recent years to precipitation reconstruction in broader 
regions such as East Africa, East Asia, and South America (Klein 
and Goosse, 2018; Shi et al., 2019; Lyu et al., 2024), achieving 
favorable results. Notably, a recent study (Lyu et al., 2024) 
applied particle filter to reconstruct South American monsoon 
precipitation and circulation fields, using over 600 particles. It 
was found that particle filter effectively captures the nonlinear 
dynamic relationship between δ 1 8O and precipitation, leading to 
better assimilated results. 

2.3 Offline ensemble Kalman filter  

The offline ensemble Kalman filter (EnKF) has been widely used 
in the field of paleoclimate data assimilation in recent years 
(Hakim et al., 2016; Tardif et al., 2019; Tierney et al., 2020; Li et 
al., 2024; Wu et al., 2025). The core idea of EnKF is to update the 
expected value at each time step using paleoclimate proxy 
records, while assigning weights by comparing the error of the 
proxy records with the observational error covariance. The 
ensemble concept is reflected in the estimation of the background 
error covariance matrix based on statistical characteristics. The 
specific formula is as follows:  

Hx x K y x= + [ ( )] (5)a b b

where xa is the assimilated result; xb is the prior estimate, 
typically sampled from a static source or obtained through 
conditional sampling, such as existing climate model simula
tions; y is the proxy records; H is the PSM that transforms the 
prior estimate into the proxy space; Hy x( )b characterizes the 
difference between the observed data and the prior estimate; and 
K is the Kalman gain matrix. K is used to assign weight to 

Hy x( )b and transform it into the state (xb) space. The 
calculation formula is as follows:  

K BH HBH R= [ + ] (6)T T 1

where B is the covariance matrix of the prior estimate, R is the 
error covariance matrix of the observations, and H is a linear 
PSM. 

The main advantages of the offline EnKF method are the high 
accuracy under the given assumptions, a relatively straightfor
ward solution process, ease of parallel computation, and 
convenient system implementation. These features have con
tributed to its widespread application in the field of paleoclimate 
data assimilation in recent years. Its primary drawbacks include 
the assumptions that the errors in prior estimates and observa
tions follow Gaussian distributions, and that the relationships 
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between observations and model results are linear. 
In terms of applications, early studies conducted a series of 

idealized experiments on the applications of the EnKF in 
paleoclimate data assimilation. For example, Huntley and Hakim 
(2010) tested the sensitivity of the EnKF to the distribution of 
observation sites and found that when the number of sites is 
limited, assimilated results based on a small number of well- 
distributed sites are comparable to the results based on a large 
number of randomly distributed sites. Pendergrass et al. (2012) 
demonstrated that assimilation skill significantly improves 
compared to statistically based reconstructions under two 
conditions, i.e., when the model’s forecast skill exceeds the 
temporal resolution of the proxy records, and when climate 
covariance is strongly correlated with the mean state. Steiger et 
al. (2014) applied the EnKF to temperature reconstruction over 
the past millennium, compared it with traditional principal 
component analysis (PCA) methods, and found that the EnKF 
results are more reliable in terms of spatial features, particularly 
in regions with sparse proxy data. Subsequently, Hakim et al. 
(2016) and Tardif et al. (2019) further applied the EnKF method 
to produce the Last Millennium Reanalysis (LMR). In recent 
years, newly developed reanalysis datasets for the last two 
millennia (Hu et al., 2024; Wu et al., 2025), Holocene 
temperature reconstructions (Erb et al., 2022), and Last Glacial 
Maximum Reanalysis (LGMR, Tierney et al., 2020; Osman et al., 
2021) have all been based on the EnKF method. 

2.4 Online data assimilation  

Since offline assimilation methods construct prior distributions 
based solely on a static source, such as existing climate 
simulations, they lack memory of previous climate states. 
Therefore, many researchers have begun exploring online 
assimilation methods to address this limitation (Perkins and 
Hakim, 2017, 2020). For example, Perkins and Hakim (2017, 
2020) used a linear inverse model (LIM) in the assimilation of 
annual temperature and circulation fields to perform online 
predictions of the posterior, generating prior distributions for the 
next assimilation step. Their findings indicate that online 
assimilation methods outperform offline ones, with improve
ments largely attributed to the dynamical constraints of the 
coupled ocean-atmosphere system. Compared to earlier online 
assimilation methods that often relied on LIM, Meng and Hakim 
(2024) developed an online EnKF assimilation system based on a 
deep learning model, and further reconstructed monthly tropical 
Pacific sea surface temperature (SST), meridional and zonal wind 
stress, and upper-ocean temperatures across seven layers. They 
found that because deep learning models can capture more 
nonlinear relationships between current and future climate 
states and retain greater prediction capacity, they yield more 
accurate forecasts than traditional LIM. Moreover, these 
improvements vary by region and variable, primarily manifesting 
in extratropical zonal wind stress and SST, equatorial ocean 
temperatures, and the thermocline in the central Pacific. In terms 
of precipitation assimilation, due to the lower memory precipita
tion, the skill of online precipitation assimilation remains below 
that of temperature and circulation fields (Perkins and Hakim, 
2020), similar to offline assimilation. 

Due to the longer memory of the ocean, online assimilation can 
transfer oceanic memory to the atmosphere, thereby improving 
atmospheric assimilation, especially for the past millennium, 

where proxy records are predominantly derived from terrestrial 
indicators (Perkins and Hakim, 2020; Meng and Hakim, 2024; 
Meng et al., 2025). However, for longer time scales, several 
questions remain to be explored, e.g., to what extent can oceanic 
memory enhance the prediction skill of online assimilation, how 
reliable is it for predictions of decadal and longer scale variability, 
what role can deep-sea proxies like foraminifera play in 
improving long-scale prediction skill, and to what degree does 
prediction skill depend on the model used? Furthermore, current 
online assimilation efforts have largely focused on the last two 
millennia, as longer time periods require substantially greater 
computational resources, making simple climate models more 
feasible for such applications. Nevertheless, with advances in 
computational power in the future, Earth system models may also 
become viable for online assimilation over longer time periods. 

3. Applications of paleoclimate data assimilations  

In recent years, the applications of paleoclimate data assimilation 
in reconstructing climates in different typical periods have 
yielded numerous significant results. Previous studies have 
provided detailed summaries of these applications (Zhang et al., 
2025). Here, a brief review is offered from the perspective of 
technical details. 

3.1 Last two millennia  

The last two millennia are the most mature period for the 
application of paleoclimate data assimilation. Since the introduc
tion and subsequent methodological advancements, paleoclimate 
data assimilation has largely focused on climate reconstruction 
for this period (e.g., von Storch et al., 2000; Goosse et al., 2010). 
In recent years, significant progresses have been made in data 
assimilation for this period, driven by improvements in both 
proxy records and model simulations (Zhu et al., 2023). 
Commonly used proxy datasets include the PAGES2k and 
Mann09 datasets, as well as newer datasets such as CoralHy
dro2k. Widely utilized simulations include the PMIP past1000 
simulations and the CESM-LME simulations. In terms of 
assimilation methods, early techniques such as nudging, particle 
filter, and EnKF have all been applied, with particle filter and 
EnKF being more prevalent in recent years. Furthermore, 
substantial methodological advancements have been achieved, 
such as the development of the Analogue Offline Ensemble 
Kalman Filter (AOEnKF) and Hybrid Gain Analogue Offline 
Ensemble Kalman Filter (HGAOEnKF) by Sun et al. (2022, 
2024). These methods enhance assimilation skills by refining the 
sampling of prior distributions. Additionally, recent online 
assimilation approaches (Meng and Hakim, 2024; Meng et al., 
2025; Sun et al., 2025) have further contributed to these 
advancements. 

Currently, the major assimilated datasets include the Last 
Millennium Reanalysis (LMR) (Hakim et al., 2016; Tardif et al., 
2019), the Paleo Hydrodynamics Data Assimilation Product 
(PHYDA) (Steiger et al., 2018), and the Nanjing Normal 
University Last Two Millennia Reanalysis (NNU-2ka Reanalysis) 
(Hu et al., 2024; Wu et al., 2025). In addition to conventional 
variables such as temperature, precipitation, and circulation 
fields, these datasets also include indices like the Palmer Drought 
Severity Index (PDSI), the Intertropical Convergence Zone (ITCZ), 
El Niño-Southern Oscillation (ENSO), the Pacific Decadal Oscilla
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tion (PDO), and the Atlantic Multidecadal Oscillation (AMO). 
Because of the maturity of assimilation techniques for the last 

two millennia, paleoclimate data assimilation has been applied 
not only for reconstructing climate characteristics but also for 
analyzing the mechanisms of multi-scale climate variability (Zhu 
et al., 2022). For instance, Erb et al. (2020) reconstructed 
drought and circulation fields in the United States over the past 
millennium and revealed that internal variability, rather than 
external forcings, dominated multi-year droughts. Lyu et al. 
(2024) reconstructed South American monsoon intensity over 
the past millennium and found a centennial-scale strengthening 
during the transition from the Medieval Climate Anomaly (MCA) 
to the Little Ice Age (LIA), which was linked to a southward shift 
of the Atlantic Intertropical Convergence Zone (ITCZ) and an 
intensification of the Pacific Walker Circulation. Additionally, 
Fang et al. (2022) assimilated proxy records from tree rings, ice 
cores, lake sediments, and historical documents in the Arctic to 
reconstruct the Arctic amplification index over the past 
millennium, and indicated that the AMO dominated its multi- 
decadal variations, while anthropogenic greenhouse gases drove 
its centennial-scale weakening since the Industrial Revolution. 

Overall, assimilation of temperature and circulation fields over 
the last two millennia has reached a relatively mature stage. 
However, challenges remain in precipitation assimilation, as 
precipitation exhibits greater spatial heterogeneity and local 
variability compared to temperature (Hancock et al., 2023). 
Furthermore, the relationships between precipitation and proxy 
records, as well as the underlying mechanisms, are more complex 
(Wu et al., 2025). Additionally, due to the abundance of proxy 
records and more developed PSMs, the last two millennia also 
serve as a testing ground for future advancements of assimilation 
methods. 

3.2 Holocene  

Compared to the last two millennia, the applications of 
paleoclimate data assimilation in the Holocene and earlier 
periods is relatively limited, with the EnKF method being the 
primary assimilation algorithm used. For the Holocene period, 
Erb et al. (2022) employed the EnKF method to reconstruct 
spatially and temporally continuous temperature variations. The 
proxy records used were from the Temperature 12k dataset 
(Kaufman et al., 2020), which includes indicators from lake 
sediments, marine sediments, peat, ice cores, and stalagmites. 
The simulations were derived from the LGM transient experiment 
using the HadCM3 model (Snoll et al., 2022) and the TraCE-21ka 
experiment based on the CCSM3 model (Liu et al., 2014). The 
findings indicate that the Mid-Holocene temperature was the 
highest in the pre-industrial era, approximately 0.09 °C higher 
than that of the past millennium. This result is lower than 
previous Holocene reconstructions (Marcott et al., 2013; Kauf
man et al., 2020) but higher than other assimilated results 
(Osman et al., 2021). Additionally, Erb et al. (2022) also 
investigated the influence of seasonality on Holocene tempera
ture trends and found that even when accounting for summer 
biases across all records, the discrepancies between proxy records 
and simulations could not be fully explained. 

3.3 Since the LGM  

Tierney et al. (2020) and Osman et al. (2021) applied the EnKF 

method to reconstruct temperature changes since the LGM. The 
proxy records they used consisted of marine geochemical 

indicators representing SST, including δ 18O, Mg/Ca, U37
K , TEX 86. 

The simulations were four snapshot experiments conducted 
using the iCESM. The assimilated results show that the global 
mean temperature during the LGM decreased by −6.1 °C (with a 
95% confidence interval of −6.5 to −5.7 °C), corresponding to 
an estimated climate sensitivity of 3.4 °C (with a 95% confidence 
interval of 2.4–4.5 °C) (Tierney et al., 2020). The primary drivers 
of temperature changes since the LGM were radiative forcings 
induced by ice sheets and greenhouse gases, followed by 
variations in the Atlantic Meridional Overturning Circulation 
(AMOC) and seasonal solar radiation (Osman et al., 2021). 
Annan et al. (2022) also employed the EnKF method, utilizing 
multi-model results from PMIP and three sets of gridded SST and 
surface air temperature datasets to reconstruct LGM sea surface 
and surface air temperatures. Their results indicate that the 
global mean temperature anomaly during the LGM relative to the 
pre-industrial era was −4.5±0.9 °C. The discrepancy between 
this result and that of Tierney et al. (2020) primarily stems from 
differences in prior selection. Consequently, they recommend 
using multi-model ensembles as reliable prior estimates, provided 
that the range of simulations comprehensively and realistically 
captures the main sources of uncertainty. 

3.4 Deep-time data assimilation  

In recent years, paleoclimate data assimilation has also been 
applied to the reconstruction of deep-time climates. For instance, 
focusing on the Paleocene-Eocene Thermal Maximum (PETM, 
56 Ma), Tierney et al. (2022) utilized the EnKF method to 
reconstruct the climate state during the PETM. In addition to the 
four marine geochemical indicators used in the LGMR assimila

tion, terrestrial proxy indicators such as MBTMe
5 were incorpo

rated. The simulations were derived from a set of Early Eocene 
experiments conducted using the iCESM model. The assimilated 
results indicate that the global mean temperature anomaly 
during the PETM was 5.6 °C (with a 95% confidence interval of 
5.4–5.9 °C), corresponding to an estimated climate sensitivity of 
6.5 °C (with a 95% confidence interval of 5.7–7.4 °C) (Tierney et 
al., 2022). 

Li et al. (2024) also employed the EnKF method to reconstruct 
carbon cycle perturbations during the PETM. The proxy 
indicators used included deep-sea sedimentary CaCO 3 and SST 
proxies (δ 1 8O, Mg/Ca, and TEX 86). The simulations were a 100- 
member ensemble of experiments conducted with the cGENIE 
model. The assimilated results show that atmospheric CO 2 

increased from 890 ppm(1 ppm=1 μL/L) to 1980 ppm, seawater 
pH decreased by 0.46, and the saturation state of calcium 
carbonate in seawater declined from 10.2 to 3.8. 

The Pliocene (5.33–2.58 Ma) is the most recent geological 
period when atmospheric CO 2 concentrations approached 
400 ppm. Tierney et al. (2025a) used the EnKF method to 
reconstruct the climate state of the Pliocene, utilizing SST proxies 
(δ 1 8O, Mg/Ca, and TEX 86) as indicators. The simulations include 
14 PlioMIP2 experiments, 2 Pliocene sensitivity experiments 
based on CESM2, and 21 Pliocene-like experiments based on 
CESM1. The assimilated results indicate that the mid-Pliocene 
warming was approximately 4.1 °C (with a 95% confidence 
interval of 3.0–5.3 °C), corresponding to an estimated climate 
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sensitivity of 4.8 °C (with a 95% confidence interval of 
2.6–9.9 °C). Additionally, the equatorial Pacific SST gradient 
exhibited an El Niño-like pattern, with lower salinity over the 
North Pacific but higher salinity over the North Atlantic. 

Judd et al. (2024) further employed the EnKF method to 
reconstruct global mean temperatures during the Phanerozoic 
(485 Ma) (PhanDA). The proxy records consisted of marine 
geochemical indicators representing SST, including δ 18O, Mg/Ca, 

U37
K , TEX 86. The simulations were 80-member snapshot experi

ments conducted using the iCESM. The assimilated results show 
that the global mean temperature varied between 11 to 36 °C, 
corresponding to an estimated climate sensitivity of approxi
mately 8 °C. Moreover, atmospheric CO 2 concentration was 
identified as the primary driver of global mean temperature 
variations throughout the Phanerozoic. 

Overall, assimilation methods for the last two millennia are 
relatively mature and diverse, including particle filter, EnKF and 
its variants, as well as various recent online assimilation 
techniques. In contrast, for the Holocene and earlier periods, 
assimilation primarily relies on the EnKF method. In terms of 
initial conditions, assimilation for the last two millennia and the 
Holocene mainly utilizes results from transient simulations, while 
for the LGM and earlier periods, snapshot simulation results are 
predominantly used. Regarding proxy records, assimilation for 
the last two millennia focuses on tree rings, coral δ 1 8O, and Sr/Ca 
ratios, etc. For the Holocene, assimilation relies more on 
stalagmite δ 1 8O, lake and marine sediments, whereas for the 
LGM and earlier periods, marine geochemical indicators are the 
primary proxies used. 

3.5 Existing assimilation datasets and platforms  

For the last two millennia, in terms of assimilation datasets, 
Hakim et al. (2016) combined the PAGES 2ka reconstruction 
dataset with simulations of the last millennium to produce the 
LMR, which includes temperature, precipitation, and circulation 
fields. Steiger et al. (2018) further reconstructed the Paleo 
Hydrodynamics Data Assimilation Product (PHYDA), encom
passing drought-wetness indices and circulation fields for the last 
two millennia. Hu et al. (2024) developed the NNU-2ka 
Reanalysis. Erb et al. (2022) reconstructed Holocene tempera
ture data, while the Tierney team produced temperature change 
datasets for the LGM (LGMR), the Paleocene–Eocene Thermal 
Maximum (PETM), the Pliocene, and the Phanerozoic. All these 
datasets have been made openly accessible. 

Among these datasets, the assimilated results for the last two 
millennia include not only conventional variables, such as 
temperature and precipitation, but also circulation fields at 
different altitudes. In contrast, the assimilated results for the 
Holocene and earlier periods primarily focus on temperature 
reconstructions. Therefore, reconstructing circulation fields for 
these earlier periods represents one of the future research 
directions. However, achieving this goal requires a deeper 
understanding of the mechanisms driving climate change during 
these periods, as well as improvements in model simulations. 

Regarding assimilation platforms, many of the current 
assimilation algorithms are open-source, primarily based on 
the EnKF or its variants in Python or MATLAB. Key platforms 
include the LMR toolkit (Hakim et al., 2016), which corresponds 
to the LRM, its modified version LMR Turbo (LMRt) (Zhu et al., 

2021), and the more recent Climate Field Reconstruction (cfr) 
toolkit (Zhu et al., 2024), all of which are developed in Python. 
The research team led by Jessica Tierney at the University of 
Arizona has also developed the DASH software package (King et 
al., 2023), which corresponds to the Last Glacial Maximum 
Reanalysis (LGMR) and is based on MATLAB. The AOEnKF and 
HGAOEnKF software packages developed by Lili Lei’s team at 
Nanjing University (Sun et al., 2022, 2024) are also based on 
MATLAB. Additionally, the deepDA package developed by 
Mingsong Li’s team at Peking University (Li et al., 2024) is 
implemented in Python. The core algorithms of all these 
software packages are based on the EnKF or its improved 
variants. 

3.6 Case study  

Oxygen isotope δ 1 8O, as a proxy indicator preserved in multiple 
archives, is widely used in paleoclimate reconstruction across 
various time periods. Previous reconstructions based on oxygen 
isotopes predominantly relied on linear regression models, often 
neglecting the physical mechanisms underlying the relationship 
between δ 1 8O and climate variables (Liu et al., 2023). Today, 
with the availability of isotope-enabled simulations, the physical 
mechanisms driving δ 1 8O variations can be better understood, 
enabling assimilation of oxygen isotopes from various archives 
using nonlinear PSMs (Tierney et al., 2020; Lyu et al., 2024). 
Lyu et al. (2024) demonstrated that incorporating δ 1 8O into the 
assimilation process improves the reconstruction of South 
American monsoon variability compared to earlier datasets such 
as LMR and PHYDA. So, how does assimilation skill differ 
between nonlinear PSMs and traditional linear PSMs? Below, we 
specifically compare the differences in SST assimilation using 
linear and nonlinear PSMs for coral δ 1 8O. 

Fig. 3A and 3B show the Niño3.4 indices from assimilated 
results based on linear and nonlinear PSMs, respectively, 
compared with observations. The results indicate that both 
methods yield assimilated results with high correlations with 
observations (r=0.82, 0.81, p<0.01), with no significant 
difference between them. Fig. 3C and 3D illustrate the covariance 
spatial fields used in the two assimilation methods, using the 
Palmyra Island record as an example. The spatial correlation 
fields between SST and δ 1 8O at Palmyra Island and global SST 
resemble the typical ENSO pattern, indicating that both variables 
effectively represent SST in the Niño3.4 region and can be used 
for assimilating the Niño3.4 index. The assimilated results show 
minimal differences between the two methods, with the non
linear PSM assimilation results exhibiting a wider distribution. 
The coefficient of efficiency for the nonlinear PSM is 0.35, which 
is lower than the 0.55 for the linear PSM. This suggests that the 
two methods perform similarly in reproducing Niño3.4 index 
variability, though the nonlinear PSM results cover a broader 
range. 

This indicates that the assimilation performance of nonlinear 
PSMs based on isotope-enabled simulations is comparable to that 
of traditional linear PSMs. Consequently, applying nonlinear 
PSMs constructed from simulations to the assimilation of proxy 
indicators such as stalagmite oxygen isotopes holds promising 
prospects for the future. Additionally, these approaches can be 
used to refine linear PSMs for proxy indicators, such as 
foraminiferal isotopes and tree-ring isotopes, as well as to 
validate assimilated results. 
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4. Prospects  

Since the concept of paleoclimate data assimilation was 
introduced in 2000, it has made significant progresses in 
paleoclimate research. This paper systematically reviews the 
development of paleoclimate data assimilation, its applications in 
different typical periods, and the key scientific questions it 
addresses. It can be said that paleoclimate data assimilation has 
greatly enhanced our understanding of the spatiotemporal 
characteristics and evolutions of climate in various historical 
periods. In periods with well-established applications of paleocli
mate data assimilations, such as the last two millennia, 
assimilation methods can also be used to improve our under
standing of the mechanisms behind climate change. Currently, 
research plans related to paleoclimate data assimilation within 
several international scientific programs are also being actively 
prepared, such as the Paleoclimate Data Assimilation Model 
Intercomparison Project (Paleo-DA MIP) in CMIP7 and the 
Paleoclimate Reanalysis and Integration of Synthesis and Models 
(PRISM) project in PAGES2k. 

Indeed, paleoclimate data assimilation research is still in its early 
stages. Even the currently widely used offline EnKF method, while 
simplified and effective, still has several aspects that urgently 
require resolution or further refinement. The following sections will 
outline prospects for key scientific questions that can be addressed 
by paleoclimate data assimilation, its advantages and limitations, 
potential improvements, and future research directions. 

4.1 Key scientific questions that can be addressed by 
paleoclimate data assimilation  

How to better reconstruct the characteristics and rules of 

paleoclimate by integrating proxy records and model simulations 
is the primary scientific question that paleoclimate data 
assimilation needs to address. Beyond the fundamental recon
structions of multiple scale climate changes, paleoclimate data 
assimilation is also applied to resolve controversies between 
proxy records and simulations, as well as among proxy records 
themselves. A typical example is the Holocene temperature 
conundrum. Erb et al. (2022) argue that the Mid-Holocene 
temperature was higher than the past millennium, whereas the 
assimilated results of Osman et al. (2021) and Bova et al. (2021) 
do not show a pronounced Mid-Holocene warming period. Erb et 
al. (2022) also conducted sensitivity experiments, revealing that 
while seasonal biases in proxy indicators may reflect summer 
temperature trends, the potential impact of such biases is 
insufficient to align the reconstructed global mean temperature 
with the warming trend observed in transient simulations. In 
contrast, Osman et al. (2021) suggest that the overemphasis on 
sparse proxy data from the Southern Hemisphere may partially 
induce the Mid-Holocene warming period, but this only accounts 
for a fraction of the warm anomaly. Further research is needed to 
reconcile the discrepancies between proxy records and simula
tions, particularly regarding whether paleoclimate data assimila
tion can contribute to this issue. 

Recently, Hao et al. (2025) reconstructed Holocene tempera
tures using global marine sediment proxies and found significant 
spatial heterogeneity in Mid-Holocene temperature anomalies. 
Specifically, winter and annual mean temperatures were higher 
in Europe and high-latitude Eurasia, while other regions 
exhibited lower temperatures. The discrepancies were attributed 
to a cold bias in high-latitude regions due to biases in vegetation 
and sea ice feedbacks in the models, as well as a warm bias due to 

Fig. 3 Comparison of the reconstructed Niño3.4 indices based on the linear PSM (A) and the nonlinear PSM (B) during the observational period, along with the spatial 
correlation fields representing the covariance matrices used in assimilation (C, D). In panel D, seawater δ 18O sw was converted to coral δ 18O c before calculating the correlation 
coefficients.  
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the concentration of proxy records in Europe. 
Additionally, recent alkenone-based reconstructions in mid- 

latitude Eurasia (Jiang et al., 2024) also highlight spatial 
heterogeneity in Holocene temperature trends, showing cooling 
in northeastern China but warming in southwestern Siberia. This 
provides crucial insights about the regional localization of 
covariance matrices when assimilating proxy records at different 
regions. Furthermore, a recent study (Liu et al., 2025) indicates 
that proxy records may underestimate temperature seasonality, 
causing reconstructed Holocene temperature trends to be 
dominated by summer temperatures. Whether data assimilation 
can reduce this uncertainty by integrating simulations to 
produce a more reliable Holocene temperature trend remains 
an important question for further exploration. 

In addition to reconstructing climate characterisitics, data 
assimilation is being applied to mechanism studies, particularly 
for the well-established period of the last two millennia. 
Currently, assimilation for the last two millennia has successfully 
reconstructed circulation fields, while assimilation for other 
typical periods remains focused on reconstructing the spatio
temporal characteristics of variables such as temperature. For 
example, studies of the past millennium have examined multi- 
scale monsoon precipitation or drought variations and their 
driving mechanisms (Erb et al., 2020; Lyu et al., 2024). This is 
because the PSMs linking proxy indicators to circulation changes 
during the last two millennia are relatively well-understood. Key 
factors include the availability of proxy records for calibration of 
PSMs during the instrumental period, and the mature climatic 
interpretation of proxy indicators for this period. 

In terms of algorithms, circulation fields reconstructed using 
particle filter exhibit greater consistency with temperature and 
precipitation variations, whereas other methods, which assim
ilate circulation fields and temperature/precipitation separately, 
show less consistency. However, the reliability of particle filter for 
reconstructing circulation fields depends heavily on the model’s 
ability to accurately simulate the underlying mechanisms. 

Beyond temperature, precipitation, and circulation fields, 
paleoclimate data assimilation can also reconstruct a broader 
range of climatic and environmental variables. For instance, Li et 
al. (2024) reconstructed carbon cycling and carbonate satura
tion states during the PETM, providing valuable insights into 
ocean acidification and seawater carbonate saturation. This 
approach also offers a novel perspective for reconstructing the 
climatic and environmental conditions of even older geological 
periods. 

Additionally, quantitatively differentiating the contributions 
from internal variability and external forcings, another key 
scientific question in paleoclimate research, is also an important 
aspect of mechanism studies facilitated by paleoclimate data 
assimilation. Previous research often relied on single-forcing 
sensitivity experiments to differentiate these contributions, but 
such methods suffer from model dependency. In contrast, 
paleoclimate data assimilation, by integrating results from 
multiple models, can provide a more robust estimate of the 
responses to external forcings, thereby contributing to addressing 
this issue. 

For example, under specific external forcings, early assimila
tion methods yielded results that did not exceed the range of 
internal variability from the model simulations (Widmann et al., 
2010). In the assimilation process, sources of internal variability 
include randomly selected initial conditions from multi-model 

ensembles and higher-frequency variability beyond the signal (or 
noise) in proxy records. Sources of the response to external 
forcings encompass the simulated responses from multi-model 
ensembles and the signal within the proxy records. By 
quantitatively assessing the reliability of these two sources, a 
more accurate representation of the responses to external 
forcings and internal variability can be achieved, thereby 
enabling a better quantitative differentiation of their relative 
contributions to climate change. 

In terms of contributing to future climate projections, climate 
sensitivity is also one of the key scientific questions frequently 
addressed in paleoclimate data assimilation. Climate sensitivity is 
defined as the change in the Earth′s surface temperature when 
atmospheric CO 2 concentration doubles. Its calculation method 
(Tierney et al., 2020) is as follows:  

R FECS =
GMST

× (7)2× CO 2

where GMST is the change in global mean surface temperature 
for the typical period obtained through assimilation, R is the 
radiative forcing for that period, and F2× CO 2

is the radiative 
forcing resulting from a doubling of CO 2 concentration. In the 
calculation process, R and F2× CO 2

are estimated from model 
simulations, while the assimilated results provide the value of 

GMST . Based on the LGMR, Tierney et al. (2020) estimated the 
climate sensitivity to be 3.4 °C (with a 95% confidence interval of 
2.4–4.5 °C). Tierney et al. (2025a) estimated the climate 
sensitivity based on Pliocene temperature assimilation to be 
4.8 °C (with a 90 % confidence interval of 2.6–9.9 °C). Judd et al. 
(2024) estimated the climate sensitivity based on Phanerozoic 
temperature assimilation to be approximately 8 °C. These results 
show that the value of climate sensitivity increases with the 
temperature of the typical periods, and the variation in 
confidence intervals indicates that the distribution of assimilated 
results expands as the period extends further back in time. 
Furthermore, the uncertainty in estimating radiative forcing for 
the typical period also significantly impacts the calculation of 
climate sensitivity, underscoring the need for further improve
ment in reconstructing external forcings and enhancing the 
accuracy of model feedbacks for these periods. 

4.2 Limitations of paleoclimate data assimilations and 
potential improvements  

In recent years, researchers have made significant improvements 
to address the limitations of various components in paleoclimate 
data assimilation, such as PSMs and assimilation algorithms. 
These improvements are reflected in better selection of priors for 
assimilation, more accurate construction of relationships be
tween observed and simulated variables, and advances in online 
assimilation techniques. 

As previously discussed, the quantification of uncertainties is 
one of the primary challenges in paleoclimate data assimilation, 
with significant difficulties in uncertainty estimations of both 
proxy records and model simulations. When calculating the 
uncertainty of proxy records, it is essential to account for 
statistical uncertainty inherent in the records, dating errors, 
instrumental measurement errors, spatial representativeness 
errors, and representation errors of the PSM. Quantifying these 
uncertainties requires in-depth investigation and close collabora
tion with experts in reconstruction fields. For estimating the 
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uncertainty of model simulations, a large number of independent 
samples of long-term climate means are needed, specifically, 
long-term simulations that fall within the observational error 
range but vary in external forcings, boundary conditions, and 
model parameters. Currently, computational resources are 
insufficient to meet this demand. Moreover, most current 
assimilation studies rely on results from a single model. Future 
assimilation efforts should incorporate multi-model simulations 
to better quantify the uncertainties associated with model 
outputs. 

Regarding the quality control and error estimation of proxy 
records, although more proxy records can provide more 
paleoclimate information and contribute to more accurate 
reconstructions, simply adding new proxy records into the 
assimilation process is not sufficient. Instead, appropriate quality 
control must be applied, followed by the quantification of their 
uncertainties. Then, an objective assessment of the weight that 
they account for in the assimilation process should be made. 

During the assimilation process, it is essential to first quantify 
the contributions of proxy records from different regions for 
assimilations targeting different periods, scales, and variables 
(Wu et al., 2025). Regarding dating errors, the high accuracy of 
tree-ring dating can be leveraged in the last two millennia to 
partially calibrate proxy data with annual or higher resolutions, 
such as coral records (Hu et al., 2024). For longer time scales, in 
the absence of proxy records with precise dating for calibration, 
integrating dating errors into the assimilation process requires 
thorough collaboration with experts in reconstruction fields to 
incorporate their empirical knowledge. Additionally, beyond the 
commonly used proxy records, other less frequently applied 
records, particularly qualitative materials such as historical 
documents, also need to be considered for integration into 
assimilation. To achieve this, the error estimation methods for 
different types of proxy records should account for characteristics 
like resolution and dating accuracy, enabling the effective fusion 
of diverse data sources. 

In terms of PSM construction and refinement, the models for 

tree-rings, coral oxygen isotopes, marine foraminifera, and U37
K

are now relatively well-developed. However, PSMs for stalagmite 
oxygen isotopes, pollen, and other proxies require further 
development and improvement (Ning et al., 2025a). In 
particular, PSMs linking these proxies to precipitation remain 
in their preliminary stages. In this context, with the aid of oxygen 
isotope-enabled simulations, PSMs for isotope-related proxies 
such as stalagmite oxygen isotopes can be effectively constructed 
(Ning et al., 2025b). Nonetheless, the differences between these 
nonlinear operators and traditional linear operators need to be 
systematically compared to evaluate their respective advantages 
and limitations. Additionally, machine learning methods have 
already been applied to construct nonlinear PSMs, and hold 
potential for further refinement in the future (Fang and Li, 2019; 
Wei et al., 2024). For example, Fang and Li (2019) developed a 
nonlinear PSM for tree-ring width using an artificial neural 
network approach, demonstrating that its assimilation perfor
mance surpasses the linear regression and the VS-Lite model. 
This also confirms the feasibility of applying machine learning 
methods to the assimilation of other variables in the future. 

In terms of validating assimilated results, if the assimilated 
period overlaps with the instrumental era, observational data can 
be used for validation, with common metrics including the 

correlation coefficient, root mean square error, and coefficient of 
efficiency (Zhang et al., 2025). However, for longer time periods 
lacking observational data, a common approach is to withhold 
25% of the proxy records for independent validation (Hakim et 
al., 2016; Tierney et al., 2020; Osman et al., 2021; Wu et al., 
2025). This method, however, incorporates the uncertainties of 
the proxy records themselves, which may affect the objectivity of 
the validation. Recent studies have attempted to use independent 
observational data, such as borehole temperatures, for validation 
(Meng et al., 2025). Therefore, exploring more objective methods 
for validating assimilated results remains an important direction 
for future research. 

4.3 Future research directions of paleoclimate data 
assimilations  

Building on the aforementioned improvements, paleoclimate 
data assimilation can be further developed in several areas, 
including online paleoclimate assimilation, paleoclimatic dyna
mical constraints, and the applications of deep learning and big 
data. 

4.3.1 Paleoclimate online data assimilation  
In terms of future developments in assimilation algorithms, 
besides improvements to traditional offline assimilation methods 
(Sun et al., 2022, 2024), online assimilation has recently 
emerged (Perkins and Hakim, 2020; Meng and Hakim, 2024; 
Sun et al., 2025). It is important to note, however, that 
paleoclimate online data assimilation differs from online integra
tion assimilation used in modern climate studies. The main 
distinction lies in the fact that the initial field at the current time 
step is generated from the state vectors of the preceding 
12 months using machine learning methods (Meng and Hakim, 
2024). Compared to conventional offline assimilation methods 
and online assimilation methods based on LIM, machine 
learning-based online assimilation has demonstrated higher 
accuracy for the last two millennia, particularly under conditions 
where proxy records are sparse (Sun et al., 2025). 

Current online assimilation efforts largely focus on monthly 
scale reconstructions for the last two millennia. Key challenges 
include whether temporal resolution can be further increased, 
whether the methods can be extended to longer time periods, and 
how to enhance computational efficiency while leveraging the 
advantages of online assimilation in constructing initial fields. 
Moreover, deep learning-based online assimilation algorithms 
still suffer from signal attenuation issues, requiring methods such 
as inflation to increase initial ensemble perturbations to enhance 
ensemble spread (Meng and Hakim, 2024; Sun et al., 2025). 

4.3.2 Applications of paleoclimatic dynamical constraints in 
paleoclimate data assimilation  
As the primary dynamical constraint in the assimilation process, 
the refinement and application of paleoclimate dynamics play a 
crucial role in advancing assimilation methods. First, further 
clarifying the climatic interpretations of proxy indicators is 
essential. Currently, the climatic interpretations of many proxies 
are often inferred based on correlation coefficients, while the 
underlying physical processes remain poorly understood. For 
example, while ice core δ 18O from the South American Andes is 
commonly assumed to reflect ENSO variability, this correlation 
actually arises from the influence of orbital scale SST anomalies 

10                                                                                                                                                                                  SCIENCE CHINA Earth Sciences 2026 



in the eastern equatorial Pacific on mid-tropospheric water vapor 
δ 18O (Liu et al., 2023). 

Additionally, variations in stalagmite δ 18O in East Asia, which 
may reflect local precipitation, moisture source shifts, and 
upstream depletion effects, can be quantitatively disentangled 
using isotope-enabled simulations (Ning et al., 2025b), thereby 
improving the accuracy of PSMs. By leveraging models to 
determine the climatic interpretation of proxies, we can 
quantitatively distinguish the representations of a single proxy 
to different climate variables. This capability not only expands 
the application of assimilation to local variables but also enables 
the assimilation of large-scale SST or circulation fields through 
teleconnection relationships . Furthermore, when integrating 
different types of proxy records in assimilation, the quantitative 
representation of climate variables by various proxies should also 
be taken into account. 

However, it is important to note that when applying dynamical 
constraints, the covariance matrix of simulations should not be 
used indiscriminately. Models themselves contain errors; for 
instance, Sanchez et al. (2021) have found that common model 
biases, such as the double ITCZ bias, significantly impact ENSO 
reconstruction from coral records in the SPCZ region, necessitat
ing error correction before assimilation. Similarly, biases in 
simulating teleconnections also affect assimilated results . On the 
other hand, the strength of teleconnection influences from large- 
scale circulation fields varies across different characteristic 
periods (Ning et al., 2025a). Therefore, dynamical constraints 
in assimilation must also evolve over time. Currently, while 
transient simulations are used for periods such as the last two 
millennia (Hakim et al., 2016; Wu et al., 2025) and the Holocene 
(Erb et al., 2022), longer-term assimilations (e.g., Tierney et al., 
2020; Li et al., 2024) predominantly rely on snapshot 
simulations. In future research, the application of transient 
simulations for longer periods (such as iTraCE experiments) could 
improve the selection of initial fields in assimilation by better 
capturing the effects of external forcings on the climate system. 
Thus, while the usage of transient simulations has the potential 
to improve long-term assimilations, further comparative valida
tion is required. 

Furthermore, the dynamical constraints derived from paleo
climate data assimilation results can assist in optimizing the 
selection of sites for proxy record collection. Huntley and Hakim 
(2010) conducted a series of sensitivity experiments and found 
that when observations are sparse, the location of sites is more 
critical to the accuracy of assimilated results than the number of 
sites. This suggests that site selection for proxy record collection 
can be optimized by referencing assimilated results. Wu et al. 
(2025) also observed that, with a comparable number of proxy 
records, the spatial distribution of these records significantly 
impacts assimilated results. Recent improvements in assimilation 
algorithms have also focused on enhancing performance under 
conditions of sparse proxy data (Sun et al., 2025). Therefore, 
sensitivity experiments can be designed to quantitatively 
evaluate the contribution of site information from proxy data 
to climate reconstructions. In summary, compared to direct 
model simulations, paleoclimate data assimilation incorporates 
the climatic interpretation of proxy records, enabling it to provide 
more informed theoretical guidance for selecting proxy collection 
sites based on the type and attributes of the proxies (Fang and Li, 
2016). However, most of these findings are based on assimilation 
in the last two millennia. Similar sensitivity analyses for longer 

time periods remain to be conducted. 

4.3.3 Applications of deep learning and big data in paleoclimate 
data assimilation  
Machine learning and big data have been widely applied in Earth 
sciences, offering new approaches to many complex problems. In 
paleoclimate data assimilation research, deep learning methods 
were first utilized in constructing PSMs. Their advantage lies in 
not requiring a clear understanding of the physical mechanisms 
linking proxy indicators to climate variables (Fang and Li, 2019). 
However, their construction demands large amounts of data for 
training, which currently limits their application primarily to 
proxy indicators such as tree rings (Fang and Li, 2019) and 
corals (Wei et al., 2024), as these records have sufficient data 
during the observational period. For other proxy indicators with 
only limited temporal coverage overlapping with the observa
tional record, constructing PSMs based on deep learning remains 
challenging. Nonetheless, this lack of explicit physical under
standing may introduce potential biases into assimilated results. 
Moreover, similar to linear PSMs, deep learning-based PSMs also 
carry the risk of overfitting (Fang et al., 2022). Additionally, the 
impact of proxy record quality on model construction requires 
thorough evaluation. 

Besides deep learning, other machine learning methods also 
hold significant potential for application in paleoclimate data 
assimilation. For example, causal inference methods (Su et al., 
2023) can be used to clarify the genuine causal relationships 
between proxy indicators and climate variables, moving beyond 
the commonly used linear correlations. This could enhance the 
reliability and interpretability of reconstruction processes. 
Transfer learning offers considerable advantages in constructing 
PSMs, as it can overcome limitations such as scarce training data 
and high computational costs. However, it still carries the risk of 
overfitting. Before assimilating proxy records with ambiguous 
climatic interpretations, causal discovery algorithms can be 
employed to determine whether a specific climate variable 
directly drives changes in the proxy indicator or whether 
multiple variables involve confounding factors. This approach 
would help in selecting the most reliable proxy indicators for 
assimilation. Additionally, physics-informed neural networks 
can leverage known physical laws to guide the training of neural 
networks. This enables the construction of PSMs that adhere to 
physical laws, even in regions where proxy records are sparse. 

The construction of data-driven climate models is also one of 
the primary applications of machine learning in the field of data 
assimilation. For instance, Meng and Hakim (2024) introduced 
deep learning into paleoclimate data assimilation to develop an 
online assimilation system. They found that this approach yields 
more accurate reconstructions of tropical upper-ocean tempera
tures compared to traditional LIM. Sun et al. (2025) further 
advanced this by building an online assimilation framework for 
the last two millennia based on deep learning-based networks 
and an integrated hybrid EnKF. Their results demonstrate that, 
through techniques such as inflated observational errors, this 
method achieves higher accuracy than conventional LIM-based 
online assimilation and offline assimilation, particularly in earlier 
periods when proxy records are relatively sparse. 

In addition, machine learning has also been applied to model 
error estimation. For example, Peng et al. (2024) developed a 
model error estimation method based on convolutional neural 
networks to quantify errors arising from inaccurate model 
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parameters and initial conditions. When applied to data 
assimilation with simplified models, this method demonstrated 
effective correction of model errors, suggesting its potential for 
future application in paleoclimate data assimilation. 
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