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9 Fic. S1. Correlation between the EOF-truncated space (first 15 modes) and the original CCSM4 LM fields for

10 surface temperature (a, TAS) and sea surface temperature (b, TOS).
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1 Fic. S2. Forecast skill of the Linear Inverse Model (LIM) trained on CCSM4 tested on MPI-ESM-R.

» a-e. LIM correlation skill out-of-sample test on MPI-ESM-R at 12-month lead on TAS (a), TOS (b), OHC300

(c), SIC(d) and SIT (e). h. The global-mean forecast skill of different variables at lead time from 3 months to 12

@

1« months.
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FiG. S3. As in Figure S2, but for the LIM trained on MPI-ESM-R and tested on CCSM4.
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FiG. S4. As in Figure 1, but for PSMs based on expert-seasonality.
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Fic. S5. As in Figure 3, but for the expert-seasonality based PSM.
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FiG. S6. As in Figure 4, but for the expert-seasonality based PSM.
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Fic. S7. As in Figure 3, but for the correlation between reconstructions and ERA-20C Reanalysis.
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Fic. S8. As in Figure 4, but for the correlation between reconstructions and ERA-20C Reanalysis.
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15 FiG. S9. Correlation between LMR Seasonal surface temperature and ModE-RA (Valler et al. 2024) surface
s temperature over the period 1421-1900 for the annual mean (a), DJF (b), JJA (¢), MAM (d), and SON (e).

17 Global-mean correlations are indicated in the titles.
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F1c. S10. Same as Fig. S9, but for the period from 1900 to 2000.
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Fic. S11. Temporal verification of the LMR Seasonal reconstructed NH sea-ice area series (colored curves)

against IAPICEI (Semenov et al. 2024) sea-ice area (black solid curve) and satellite sea-ice area (Fetterer et al.

2017) (red dashed curve) in annual mean (a), DJF (b), MAM (c¢), JJA (d), and SON (e). The reference time

period for anomalies is 1980-2000. For each reconstruction, dark shading denotes the ensemble interquartile

range, and light shading the 0.5% to 99.5% interval.
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Fic. S12. Same as Fig. 7, but for the NH sea-ice volume.
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Fic. S13. Same as Figure 8, but with the addition of the PHYDA-reconstructed Nifio3.4 Index for comparison.

The “R” and“CE” following HadISST (PHYDA) refer to the results comparing HadISST with LMR Seasonal

(HadISST with PHYDA).
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Fic. S14. Sea-ice extent over the last millennium. The LMR Seasonal reconstructed Northern Hemisphere
sea-ice extent (SIE) time series (colored curves) is compared with the 40-year low-pass filtered SIE reconstruction
from Kinnard et al. (2011) (red curve). For LMR Seasonal, the dark blue shading indicates the interquartile
range, and the light blue shading shows the 0.5% to 99.5% confidence interval. The black curve represents
the 40-year low-pass filtered LMR Seasonal mean. Red shading shows Kinnard et al. (2011) the 5% to 95%

confidence interval. R = correlation coefficient between the two 40-year low-pass filtered reconstructions.

16



Assimilated Proxies

1
s 1880 to 2000
m before 1880

-0.5 0.0 0.5

Correlation

o

2.0

1.5

1.0

Density

0.5

Non-assimilated Proxies

I
B 1880 to 2000 |
. before 1880 i

0.0 0.5

Correlation

-0.5

Q

-1.00 -0.75 -0.50 -0.25

0.00 0.

Q0 O D s 2
D Correlation
050 0.75 1.00

25

Fic. S15. Same as Figure 12, but for the expert-seasonality based PSM.
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Temperature Trend from 850 to 1850 (°C/kyr)
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Fic. S16. Same as Figure 13, but for the MPI-ESM-R based DA results and last millennium simulations.
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Fic. S17. Time Series of Temperature in West Antarctica (Latitude: -79.46°, Longitude: 247.88°) and
MCA-LIA Temperature Difference Patterns in four PDA products. (a) The solid blue colored lines represent
the ensemble mean, black solid lines denote the 60-year running means, blue dark shading the interquartile ranges,
and light shading the central 95% confidence intervals. The solid red line denotes the temperature reconstruction
from the borehole in Orsi et al. (2012), while the dashed red line indicates the 1.5 standard deviation error bar
of the borehole reconstruction. b—e. Southern Hemisphere temperature pattern differences between MCA and
LIA from LMR Seasonal (b), LMRvV2 (¢), PHYDA (d), and LMR Online (e). Black dots denotes regions that
do not pass the 95% confidence level according to Student’s t-test. The red dot in (b) marks the location of the

borehole.
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a Fic. S18. The covariance between global Mean Temperature and local temperature in seasonal time resolution

« (upper) and annual time resolution (middle) and their difference (lower) in the CCSM4 last millennium simulation.
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Appendix: Derivation of the Linear Inverse Model

Derivation of the Linear Inverse Model (LIM) Operator L

The derivation begins from the fundamental equation of the LIM and relates it to the statistical
properties (covariance matrices) of the system. We begin with the stochastic differential equation

governing the state vector anomalies x(7):

dx
E:LX+€ (1)

where L is the linear dynamics operator to be determined, and £ is stochastic forcing, typically

assumed to be Gaussian white noise with:

€Ny =0, (EnEE)=Qs(t-1), 2)

where () means expectation.

First, consider the system without noise (£ = 0). Then Eq. (1) becomes:

dX_

Z =Lx (3)

The solution is:

x(1) = e“'x(0)

Define the propagator matrix:

G(r) =€ 4)

So the solution becomes:

x(1) = G()x(0)

Now consider the full system governed by Eq. (1). The solution from time ¢ to + 7 can be

expressed as (e.g., Oksendal 2013):

X(t+7) :G(T)X(l‘)+/t TG(t+T—s)£(s) ds 5)
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Define the following covariances under the stationarity assumption:

C(0) = (x(Nx(1)")
C(r) = x(r+1)x(1")

Multiply Eq. (5) by x(#)” and take the expectation:

C(r)= G(T)(X(l‘)X(l)T>+/I+TG(Z+T—S)<£(S)X(Z)T> ds

:G(T)C(O)+/Z+TG(t+T—s)(&(s)x(t)T)ds

Using the property of white noise (Eq. (2)), we know:

ESx()T)=0, fors>1¢

Thus, the integral in Eq. (8) vanishes:

C(7) =G(7)C(0)

Solve for the propagator:

G(7) =C(1)C(0)"

From Eq. (4), we also have:

e = C(1)C(0)~!

Taking the matrix logarithm on both sides of Eq. (10):

In (eLT) ~In (C(T)C(O)_l)
Lr=1In (C(T)C(O)‘l)

Finally, solve for L.:

L=z"'In (C(T)C(O)‘l)

22
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This is the desired expression for the LIM operator L. It shows how the linear dynamics can be

estimated from the zero-lag and lagged covariance matrices of the observed system at lag 7.

Derivation of the Noise Covariance Matrix Q

The noise covariance matrix Q characterizes the stochastic forcing £(¢) in the LIM equation. Its
derivation relies on the assumption that the system is statistically stationary, meaning the zero-lag
covariance C(0) is constant in time. We use equations defined in the previous section, such as the
LIM equation Eq. (1) and properties of the noise Eq. (2).

The zero-lag covariance matrix is given by Eq. (6):
C(0) = (x(x(n)") (12)

For a statistically stationary process, C(0) is constant, so its time derivative is zero:

dC(0)
- — =0 (13)
Using the product rule for differentiation:
dC(0) _[dx(1) 4 dx(t)\"
"0 < O >+ <x(t) ( X ) > (14)
Substitute the LIM equation, Eq. (1), % =Lx+¢&:
dC
) — (0 + €)XY+ (x(0) (Lx() + 1))
= (Lx(1)x()T) + (€ ()x()T) + {x()x() L") + {(x(1) € (1))
= L(x(0)x()7) + x(O)x() LT +(E0)x (D)) +(x(DE(D))
=LC(0) +C(OL" +(&(1)x(1)") + (x(1)&()T) (15)
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7 To evaluate the noise-state correlation terms, we express X(¢) as the solution to the LIM equation,

7 assuming the process started at ty — —oo:

x(t) = [ t eI () ds

(e

;2 Then, the first correlation term is:

t T
Enx(n?") = <£(t) ( /_ Mg (s) dS) >

oo

= <s(z) / ()Tt 09 ds>

) / (e ) ds
» Using the white noise property (£(¢)&€(s)T) = Q(¢ —s) from Eq. (2):
€0x@") =/t Qs (1 —s)et =9 ds

o The Dirac delta function §(¢ — s) means the integral picks out the value of the integrand at s = 1.
s+ When the limit of integration coincides with the location of the delta function, the result is typically

2 taken as half the value (this corresponds to the It6 interpretation):

EWx(0") =50 =2Q (16)
s Similarly, for the other term:
T
(€)= (€)' =(30) 30" (7

» Since Q is a covariance matrix, it is symmetric (Q = QT). Therefore, the sum of the correlation

e terms is:

EOXO)+(xENDT) =30+70=0 18)

24



86

87

88

89

90

91

92

93

%

95

96

97

Alternatively, this result (Q) is standard from the derivation of the Fokker-Planck equation or the
covariance evolution equation for linear stochastic systems, where Q represents the rate of change
of covariance due to noise.

Substituting Eq. (18) into Eq. (15) and using the stationarity condition Eq. (13):
0=LC(0)+C(O)L"+Q (19)

This is the continuous-time algebraic Lyapunov equation for a stationary system. It expresses the
fluctuation-dissipation theorem for this system: the dissipation of variance by the deterministic
dynamics (terms involving L) is balanced by the generation of variance by the stochastic forcing
(term Q).

Solving for Q:

Q=- (LC(O) +C(0)LT) (20)

This equation allows the estimation of the noise covariance matrix Q once the linear operator L
(from Eq. (11)) and the zero-lag covariance C(0) (from data) are known. For Q to be physically

meaningful as a covariance matrix, it must be positive semi-definite.
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